Skip to main content
Log in

Evaluation of the Corrosion Resistance of Fe–Al–Cr Alloys in Simulated Low NO x Environments

Part 1: Corrosion Exposures and Scanning Electron Microscopy

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Due to their excellent corrosion resistance, iron aluminum alloys are currently being considered for use as weld claddings in fossil fuel fired power plants. The susceptibility to hydrogen cracking of these alloys at higher aluminum concentrations has led researchers to examine the effect of chromium additions on the corrosion resistance of lower aluminum alloys. In this work, three iron aluminum alloys were exposed to simulated coal combustion environments at 500 and 700 °C for short (100 h) and long (5000 h) isothermal durations. Scanning electron microscopy was used to analyze the corrosion products. All alloys exhibited excellent corrosion resistance during short term exposures. For longer test times, increasing the aluminum concentration improved alloy corrosion resistance. The addition of chromium to the binary iron aluminum alloy prevented the formation iron sulfide and resulted in slower corrosion kinetics. A general classification of the scales developed on these alloys is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. C. Jones, Power 141, 54 (1997).

  2. J. A. Urich and E. Kramer, FACT (American Society of Mechanical Engineers) 21, 25 (1996).

    CAS  Google Scholar 

  3. S. C. Kung and W. T. Bakker, Materials at High Temperatures 14, 175 (1997).

    CAS  Google Scholar 

  4. K. Luer, J. DuPont, A. Marder, and C. Skelonis, Materials at High Temperatures 18, 11 (2001).

    Article  CAS  Google Scholar 

  5. S. W. Banovic, J. N. DuPont, and A. R. Marder, Science and Technology of Welding and Joining 7, 374 (2002).

    Article  CAS  Google Scholar 

  6. F. H. Stott, G. C. Wood, and J. Stringer, Oxidation of Metals 44, 113 (1995).

    Article  CAS  Google Scholar 

  7. S. W. Banovic, J. N. DuPont, and A. R. Marder, in Proceedings of 5th International Conference on Trends in Welding Research (1999).

  8. F. Saegusa and L. Lee, Corrosion 22, 168 (1966).

    CAS  Google Scholar 

  9. P. Tomaszewicz and G. R. Wallwork, Oxidation of Metals 19, 165 (1983).

    Article  CAS  Google Scholar 

  10. S. W. Banovic, J. N. DuPont, and A. R. Marder, Metallurgical and Materials Transactions A 31A, 1805 (2000).

    Article  CAS  Google Scholar 

  11. P. Tomaszewicz and G. R. Wallwork, Oxidation of Metals 20, 75 (1983).

    Article  CAS  Google Scholar 

  12. J. H. DeVan, in Proceedings of the Workshop on Oxidation of High Temperature Intermetallics, 107 (1988).

  13. P. F. Tortorelli, G. M. Goodwin, M. Howell, and J. H. DeVan, in Proceedings of 2nd International Conference on Heat Resistant Materials II, 585 (1995).

  14. I. G. Wright, R. Peraldi, and B. A. Pint, Materials Science Forum 461–464, 579 (2004).

    Article  Google Scholar 

  15. H. Al Badairy, G. J. Tatlock, and M. J. A. Bennett, Materials at High Temperatures 17, 101 (2000).

    CAS  Google Scholar 

  16. H. Al Badairy and G. J. Tatlock, Oxidation of Metals 53, 157 (2000).

    Article  CAS  Google Scholar 

  17. H. Graupner, L. Hammer, K. Heinz, and D. M. Zehner, Surface Science 380, 335 (1997).

    Article  ADS  CAS  Google Scholar 

  18. J. H. DeVan and P. F. Tortorelli, Materials at High Temperatures 11, 30 (1993).

    CAS  Google Scholar 

  19. J. H. DeVan and P. F. Tortorelli, Corrosion Science 35, 1065 (1993).

    Article  CAS  Google Scholar 

  20. P. F. Tortorelli and J. H. DeVan, Materials Science & Engineering A A153, 573 (1992).

    Article  CAS  Google Scholar 

  21. J. R. Regina, J. N. DuPont, and A. R. Marder, Materials Science & Engineering A A404, 71 (2005).

    Article  CAS  Google Scholar 

  22. A. Velon and D. Q. Yi, Oxidation of Metals 57, 13 (2002).

    Article  CAS  Google Scholar 

  23. R. M. Deacon, J. N. DuPont, C. J. Kiely, A. R. Marder, and P. F. Tortorelli, Oxidation of Metals (2009) (submitted).

  24. W. E. Boggs, Journal of the Electrochemical Society 118, 906 (1971).

    Article  CAS  Google Scholar 

  25. P. Tomaszewicz and G. R. Wallwork, Reviews in High Temperature Materials 4, 75 (1978).

    CAS  Google Scholar 

  26. W. Kai and R. T. Huang, Oxidation of Metals 48, 59 (1997).

    Article  CAS  Google Scholar 

  27. S. Mrowec, Werkstoffe und Korrosion 31, 371 (1980).

    Article  CAS  Google Scholar 

  28. K. N. Strafford and R. Manifold, Oxidation of Metals 1, 221 (1969).

    Article  CAS  Google Scholar 

  29. K. N. Strafford and R. Manifold, Oxidation of Metals 5, 85 (1972).

    Article  CAS  Google Scholar 

  30. S. Mrowec and M. Wedrychowska, Oxidation of Metals 13, 481 (1979).

    Article  CAS  Google Scholar 

  31. P. C. Patnaik and W. W. Smeltzer, Oxidation of Metals 23, 53 (1985).

    Article  CAS  Google Scholar 

  32. P. J. Smith, P. R. S. Jackson, and W. W. Smeltzer, Journal of the Electrochemical Society 134, 1424 (1987).

    Article  CAS  Google Scholar 

  33. S. W. Banovic, J. N. DuPont, and A. R. Marder, Oxidation of Metals 54, 339 (2000).

    Article  CAS  Google Scholar 

  34. P. F. Tortorelli, I. G. Wright, G. M. Goodwin, and M. Howell, in Proceedings of a Symposium on Elevated Temperature Coatings: Science and Technology II, 175 (1996).

  35. T. Narita, K. Przybylski, and W. W. Smeltzer, Oxidation of Metals 22, 181 (1984).

    Article  CAS  Google Scholar 

  36. P. J. Smith and W. W. Smeltzer, Oxidation of Metals 28, 291 (1987).

    Article  CAS  Google Scholar 

  37. J. R. Regina, J. N. DuPont, and A. R. Marder, Oxidation of Metals 61, 69 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Energy through the National Energy Technology Laboratory through grant number DE-FG26-04NT42169. The authors wish to thank Dr. Vinod Sikka of Oak Ridge National Laboratory for preparation of the alloys used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Deacon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deacon, R.M., DuPont, J.N., Kiely, C.J. et al. Evaluation of the Corrosion Resistance of Fe–Al–Cr Alloys in Simulated Low NO x Environments. Oxid Met 72, 67–86 (2009). https://doi.org/10.1007/s11085-009-9148-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-009-9148-z

Keywords

Navigation