Skip to main content
Log in

The High Temperature Oxidation Behavior of Mg–Gd–Y–Zr Alloy

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation behavior of pure Mg and Mg–Gd-Y-Zr alloy was studied in O2 at 300 °C with and without the presence of water vapor. The kinetics curves revealed improved oxidation resistance of Mg–Gd–Y–Zr alloy in O2, compared with pure Mg. However, when water vapor co-existed with oxygen, the oxidation rate of Mg–Gd–Y–Zr alloy was accelerated; whereas, the oxidation rate of pure Mg was restrained. Detailed XPS analysis of pure Mg oxidized with water vapor revealed that the reduced oxidation rate could be strongly linked with the outer Mg(OH)2 film. On the contrary, for Mg–Gd–Y–Zr alloy, an incomplete Mg(OH)2 film was present in the outer region of oxide layer, which can provide a ready pathway for water vapor transport to the inner part of the oxide film and which has little oxidation resistance to water vapor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J. Chang, X. Guo, S. He, P. Fu, L. Peng, and W. Ding, Corrosion Science 50, 166 (2008).

    Article  CAS  Google Scholar 

  2. M. Suzuki, T. Kimura, J. Koike and K. Maruyama, Scripta Materialia 48, 997 (2003).

    Article  CAS  Google Scholar 

  3. C. Sanchez, G. Nussbaum, P. Azavant, and H. Octor, Materials Science and Engineering A 221, 48 (1996).

    Article  Google Scholar 

  4. I. J. Polmear, Materials Science and Technology 10, 1 (1994).

    CAS  Google Scholar 

  5. L. L. Rokhlin, in Proceedings of NATO, Advanced Study Institute, Kluwer, (1998), p. 443.

  6. I. Anthony, S. Kamado, and Y. Kojima, Materials Transactions 42, 1206 (2001).

    Article  Google Scholar 

  7. I. Anthony, S. Kamado, and Y. Kojima, Materials Transactions 42, 1212 (2001).

    Article  Google Scholar 

  8. S. Kamado, Y. Kojima, R. Ninomiya, and K. Kubota, in Proceedings of the Third International Magnesium Conference, 1996, ed. G. W. Lorimer (Institute of Materials, Manchester, 1997). p. 327.

  9. S. M. He, X. Q. Zeng, L. M. Peng, X. Gao, J. F. Nie, and W. J. Ding, Journal of Alloys and Compounds 421, 309 (2006).

    Article  CAS  Google Scholar 

  10. V. Fourneir, P. Marcus, and I. Olefjord, Surface and Interface Analysis 34, 494 (2002).

    Article  Google Scholar 

  11. S. J. Splinter, N. S. McIntyre, W. N. Lennard, K. Griffiths, and G. Palumbo, Surface Science 292, 130 (1993).

    Article  ADS  CAS  Google Scholar 

  12. C. Chen, S. J. Splinter, T. Do, and N. S. Mclntyre, Surface Science 382, L652 (1997).

    Article  CAS  Google Scholar 

  13. T. Do, S. J. Splinter, C. Chen, and N. S. McIntyre, Surface Science 387, 192 (1997).

    Article  ADS  CAS  Google Scholar 

  14. F. Czerwinski, Acta Materialia 50, 2639 (2002).

    Article  CAS  Google Scholar 

  15. M. Santamaria, F. Di Quarto, S. Zanna, and P. Marcus, Electrochimica Acta 53, 1314 (2007).

    Article  CAS  Google Scholar 

  16. T.-S. Shih, J.-B. Liu, and P.-S. Wei, Materials Chemistry and Physics 104, 497 (2007).

    Article  CAS  Google Scholar 

  17. N. S. McIntyre and C. Chen, Corrosion Science 40, 1697 (1998).

    Article  CAS  Google Scholar 

  18. H. B. Yao, Y. Li, and A. T. S. Wee, Electrochi Acta 48, 4197 (2003).

    Article  CAS  Google Scholar 

  19. B. R. Strohmeier, Surface and Interface Analysis 15, 51 (1990).

    Article  CAS  Google Scholar 

  20. N. F. Mott, Transactions of the Faraday Society 43, 431 (1947).

    Article  Google Scholar 

  21. N. Cabrera and N. F. Mott, Report on Progress in Physics 12, 163 (1949).

    Article  ADS  CAS  Google Scholar 

  22. A. T. Fromhold Jr. and E. L. Cook, Physical Review Letters 17, 1212 (1966).

    Article  ADS  CAS  Google Scholar 

  23. A. T. Fromhold Jr. and E. L. Cook, Physical Review 158, 600 (1967).

    Article  ADS  CAS  Google Scholar 

  24. A. T. Fromhold Jr. and E. L. Cook, Physical Review 163, 650 (1967).

    Article  ADS  CAS  Google Scholar 

  25. S. J. Roosendaal, A. M. Vredenberg, and F. H. P. M. Habraken, Physical Review Letters 84, 3366 (2000).

    Article  PubMed  ADS  CAS  Google Scholar 

  26. S. J. Splinter and N. S. McIntyre, Surface Science 314, 157 (1994).

    Article  ADS  CAS  Google Scholar 

  27. Y. Wouters, A. Galerie, and J.-P. Petit, Solid State Ionics 104, 89 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The investigation is supported by the National Natural Science Fund of China under the contract No.50499331-6 and No.50671113. The authors are also grateful to Professor Emeka E. Oguzie for useful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Li, Y. & Wang, F. The High Temperature Oxidation Behavior of Mg–Gd–Y–Zr Alloy. Oxid Met 71, 319–334 (2009). https://doi.org/10.1007/s11085-009-9145-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-009-9145-2

Keywords

Navigation