Skip to main content
Log in

Oxidation Behavior of Graded NiCrAlYRe Coatings at 900, 1000 and 1100 °C

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

A graded NiCrAlYRe coating was prepared by combining arc ion plating (AIP) with chemical vapor deposition (CVD) aluminizing. Quasi-isothermal oxidation tests of the graded NiCrAlYRe coating and the conventional NiCrAlYRe coating were performed in air at 900, 1000 and 1100 °C for up to 1000, 1000 and 200 h, respectively. The results showed that the graded NiCrAlYRe coating exhibited better long time oxidation resistance than the conventional NiCrAlRe coating. This favorable oxidation behavior was attributed to the rapid formation of a protective α-Al2O3 scale and a sufficient Al reservoir. The structures and morphologies of oxide scales varied under different oxidation conditions. θ-Al2O3 was observed on both coatings during oxidation at 900 °C, however, the graded coating showed more favorable conditions for θ-Al2O3 to grow than the conventional coating. For the graded coating, phase transformation from θ-Al2O3 to α-Al2O3 resulted in a sharp decrease in the parabolic rate constant kp between 900 and 1,000 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. C. Durrent, A. Davin, G. Marrijnissen, and R. Pichoir, in High Temperature Alloys for Gas Turbines, eds. R. Brunetaud, et al. (D. Reidel Publishing Corporation, Dordrecht, 1982), p. 53.

  2. G. W. Goward, in High Temperature Corrosion, ed. R. A. Rapp (NACE, Houston, 1983), p. 553.

    Google Scholar 

  3. J. T. Prater, J. W. Patten, D. D. Hayes, and R. W. Moss, in Proceedings of the 2nd Conference on Advanced Materials for Alternate Fuels Capable Heat Engines, eds. J. W. Fairbanks and J. Stringer, Vol. 7 (EPRI, Palo Alto, 1981), p. 29.

  4. J. A. Goebel, C. S. Giggins, M. Krasij, and J. Stringer, in Proceedings of the 2nd Conference on Advanced Materials for Alternate Fuels Capable Heat Engines, eds. J. W. Fairbanks and J. Stringer, Vol. 7 (EPRI, Palo Alto, 1981), p. 1.

  5. J. Forster, B. P. Cameron, and J. A. Carews, Transactions of the Institute of Metal Finishing 63, 115 (1985).

    Google Scholar 

  6. N. S. Bornstein and J. Smeggil, in Corrosion of Metals Processed by Directed Energy Beams–AIME (Metallurgical Society, 1982), p. 147.

  7. N. Czech, F. Schmitz, and W. Stamm, Surface and Coatings Technology 68–69, 17 (1994).

    Article  Google Scholar 

  8. D. R. Coupland, C. W. Hall, and I. R. McGill, Platinum Metal Review 26(4), 146 (1982).

    CAS  Google Scholar 

  9. I. M. Wolff, L. E. Lorio, T. Rumpt, P. V. T. Scheers, and J. H. Potjieter, Materials Science and Engineering 241A, 264 (1998).

    Google Scholar 

  10. F. Juarez, D. Monceau, D. Tetard, B. Pieraggi, and C. Vahlas, Surface and Coatings Technology 163, 44 (2003).

    Article  Google Scholar 

  11. N. Czech and W. Stamm, in High Temperature Surface Engineering, eds. J. R. Nicholls and D. S. Richerby (IoM Communications, London, 2000), p. 61.

    Google Scholar 

  12. W. Beele, N. Czech, W. J. Quadakkers, and W. Stamm, Surface and Coatings Technology 94–95, 41 (1997).

    Article  Google Scholar 

  13. W. Beele, G. Marijnissen, and A. Van Lieshout, Surface and Coatings Technology 120–121, 61 (1999).

    Article  Google Scholar 

  14. W. S. Walston, J. C. Schaeffer, and W. H. Murphy, in Proceedings of the 8th International Symposium on Superalloys—The Minerals and Metals Society, eds. R. D. Kissinger, et al. (TMS Publications, Seattle, 1996), p. 9.

  15. L. Huang, X. F. Sun, H. R. Guan, and Z. Q. Hu, Surface and Coatings Technology 201, 1421 (2006).

    Article  CAS  Google Scholar 

  16. L. Huang, PhD thesis, Chinese Academy of Sciences, Shenyang, China (2006).

  17. US Patent 3,874,901 (April 1975), to J. R. Rairden, General Electric Company.

  18. US Patent 3,873,347 (March 1975), to J. L. Walker and J. R. Ross, General Electric Company.

  19. B. M. Warnes, Surface and Coatings Technology 163–164, 106 (2003).

    Article  Google Scholar 

  20. D. Oquab, C. Estournes, and D. Monceau, Advanced Engineering Materials 5, 9 (2007).

    Google Scholar 

  21. X. Liu, L. Huang, Z. B. Bao, X. F. Sun, H. R. Guan, and Z. Q. Hu, Surface and Coatings Technology 202, 4709 (2008).

    Article  CAS  Google Scholar 

  22. G. C. Rybicki and J. L. Smialek, Oxidation of Metals 31, 275 (1989).

    Article  CAS  Google Scholar 

  23. P. A. van Manen, E. W. A. Young, D. Schalkoard, C. J. van der Wekken, and J. H. W. de Wit, Surface and Interface Analysis 12, 391 (1988).

    Article  Google Scholar 

  24. P. T. Moseley, K. R. Hyde, B. A. Ballamy, and G. Tappin, Corrosion Science 24, 547 (1984).

    Article  CAS  Google Scholar 

  25. W. T. Donlon, T. E. Mitchell, and A. H. Heuer, Journal of Materials Science 17, 1389 (1989).

    Article  Google Scholar 

  26. J. Doychak, J. L. Smialek, and T. E. Mitchell, Metallurgical Transactions 20A, 499 (1989).

    ADS  CAS  Google Scholar 

  27. H. J. Grabke, Intermetallics 7, 1153 (1999).

    Article  CAS  Google Scholar 

  28. B. A. Pint, A. Jain, and L. W. Hobbs, in High Temperature Ordered Intermetallics, eds. I. Baker, R. Darolia, J. D. Whittenberger, and M. H. Yoo, Vol. 288 (MRS, Pittsburgh, 1993), p. 1013.

  29. B. A. Pint and L. W. Hobbs, Journal of Electrochemical Society 141, 2443 (1994).

    Article  CAS  Google Scholar 

  30. H. M. Hindam and W. W. Smeltzer, Journal of Electrochemical Society 127, 1630 (1980).

    Article  CAS  Google Scholar 

  31. J. Doychak, C. A. Barrett, and J. L. Smialek, in Corrosion and Particle Erosion at High Temperatures, eds. V. Srinivasan and K. Vedula (TMS-AIME, Metals Park, OH, 1989), p. 487.

    Google Scholar 

  32. J.Doychak, PhD thesis, Case Western Reserve University, Cleveland, Ohio (1986).

  33. B. Pieraggi, Oxidation of Metals 27, 177 (1987).

    Article  CAS  Google Scholar 

  34. M. W. Brumm and H. J. Grabke, Corrosion Science 33, 1677 (1992).

    Article  CAS  Google Scholar 

  35. H. J. Grabke, M. W. Brumm, and B. Wagermann, Materials Corrosion 47, 675 (1996).

    Article  CAS  Google Scholar 

  36. I. Rommerskirchen, B. Eltester, and H. J. Grabke, Materials Corrosion 47, 646 (1996).

    Article  CAS  Google Scholar 

  37. M. A. Philips and B. Glesson, Oxidation of Metals 50, 399 (1998).

    Article  Google Scholar 

  38. P. Pérez, J. L. González-Carrasco, and P. Adeva, Oxidation of Metals 51, 273 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Sciences Foundation of China (Nos. 50501024 and 50671102) for financially supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Huang, L., Bao, Z.B. et al. Oxidation Behavior of Graded NiCrAlYRe Coatings at 900, 1000 and 1100 °C. Oxid Met 71, 125–142 (2009). https://doi.org/10.1007/s11085-008-9131-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-008-9131-0

Keywords

Navigation