Skip to main content
Log in

Oxidation Behavior of Highly Porous Metallic Components

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

This paper covers a study on the oxidation behavior in air of four materials processed by means of powder metallurgy (PM), in such a manner that their porosity will be high and so they can be used to manufacture anodic supports in solid-oxide fuel cells (SOFC). For this, powders with a Fe base (AISI 430L and Fe22Cr grades) and with Ni base (Ni20Cr and Ni625 grades) have been processed through a novel method specifically designed for this type of applications. The oxidation kinetics of the four materials has been studied during their exposure to high temperature, and the oxides formed both inside and on the samples have been characterized. The protective abilities of the oxides formed depend on the chromium losses during sintering of the outer surface, the oxygen diffusion rate during high-temperature exposure and the irregularities on the morphology caused by the processing method. The results of these studies have allowed to reach the conclusion that, from amongst the materials tested, Fe22Cr exhibits the best behavior in air at 800 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S. M. Haile, Acta Materialia 51, 5981 (2003).

    Article  CAS  Google Scholar 

  2. K. Eguchi, T. Setoguchi, T. Inoue, and H. Arai, Solid State Ionics 52, 165 (1992).

    Article  CAS  Google Scholar 

  3. B. C. H. Steele, Solid State Ionics 129, 95 (2000).

    Article  CAS  Google Scholar 

  4. S. Ping Jiang and S. Hwa Chan, Journal of Materials Science 39, 4405 (2004).

    Article  Google Scholar 

  5. I. Antepara, I. Villarreal, L. M. Rodríguez-Martínez, N. Lecanda, U. Castro, and A. Laresgoiti, Journal of Power Sources 151, 103 (2005).

    Article  CAS  Google Scholar 

  6. Y. B. Matus, L. C. de Jonghe, C. P. Jacobson, and S. J. Visco, Solid State Ionics 176, 443 (2005).

    Article  CAS  Google Scholar 

  7. N. Q. Minh, C. R. Horne, F. S. Liu, D. M. Moffat, P. R. Staszak, T. L. Stillwagon, and J. J. Vanackeren, in Proc. Twenty Fifth Intersociety Energy Conversion Engineering Conference, vol. 3, Reno (EEUU), 1990, eds. P. A. Nelson, W. W. Schertz y, and R. H. Hill (American Institute of Chemical Engineers, New York, USA, 1990), p. 230.

  8. D. M. Bastidas, Revista de Metalurgia Madrid 42, 425 (2006).

    CAS  Google Scholar 

  9. K. Huang, P.-Y. Hou, and J. B. Goodenough, Solid State Ionics 129, 237 (2000).

    Article  CAS  Google Scholar 

  10. P. Huczkowski, N. Christiansen, V. Shemet, J. Piron-Abellan, L. Singheiser, and W. J. Quadakkers, Journal of Fuel Cell Science and Technology 1, 30 (2004).

    Article  CAS  Google Scholar 

  11. W. Z. Zhu and S. C. Deevi, Materials Science and Engineering A358, 227 (2003).

    Google Scholar 

  12. S. Chandra-Ambhorn, Y. Wouters, L. Antoni, F. Toscan, and A. Galerie, Journal of Powder Sources 171, 688 (2007).

    Article  CAS  Google Scholar 

  13. S. Molin, B. Kusz, M. Gazda, and P. Jasinki, Journal of Powder Sources 181, 31 (2008).

    Article  CAS  Google Scholar 

  14. E. Arahuetes, A. Bautista, F. Velasco, and M. E. Sotomayor, Revista de Metalurgia Madrid (accepted for publication).

  15. H. Kurokawa, G. Y. Lau, C. P. Jacobson, L. C. de Jonghe, and S. J. Visco, Journal of Materials Processing Technology 182, 469 (2007).

    Article  CAS  Google Scholar 

  16. J. Yang and H. Matsumoto, ECS Transactions 7, 437 (2007).

    Google Scholar 

  17. B. C. Church, T. H. Sanders, R. F. Speyer, and J. K. Cochran, Materials Science and Engineering A 552–553, 334 (2007).

    Article  CAS  Google Scholar 

  18. S. Lal and G. S. Upadhyaya, Oxidation of Metals 23, 177 (1989).

    Google Scholar 

  19. A. González-Centeno, F. Velasco, A. Bautista, and J. M. Torralba, Materials Science Forum 426–432, 4355 (2003).

    Google Scholar 

  20. A. Bautista, C. Moral, F. Velasco, C. Simal, and S. Guzmán, Journal of Materials Processing Technology 189, 344 (2007).

    Article  CAS  Google Scholar 

  21. A. Bautista, F. Velasco, M. Campos, M. E. Rabanal, and J. M. Torralba, Oxidation of Metals 59, 373 (2003).

    Article  CAS  Google Scholar 

  22. A. Bautista, C. Moral, G. Blanco, and F. Velasco, Powder Metallurgy 49, 265 (2006).

    Article  CAS  Google Scholar 

  23. A. Bautista, F. Velasco, and J. Abenojar, Corrosion Science 45, 1343 (2003).

    Article  CAS  Google Scholar 

  24. A. Bautista, A. González-Centeno, G. Blanco, and S. Guzmán, Materials Characterization 59, 32 (2008).

    Article  CAS  Google Scholar 

  25. F. Velasco, A. González-Centeno, and A. Bautista, Materials Science Forum 461–464, 1149 (2004).

    Article  Google Scholar 

  26. A. Ul-Hamid, Oxidation of Metals 57, 217 (2002).

    Article  CAS  Google Scholar 

  27. Z. Yang, G.-G. Xia, M. S. Walker, C.-M. Wang, J. W. Stevenson, and P. Singh, International Journal of Hydrogen Energy 32, 3770 (2007).

    Article  CAS  Google Scholar 

  28. P. Berthod, Oxidation of Metals 64, 235 (2005).

    Article  CAS  Google Scholar 

  29. R. Baboian (ed.), Corrosion Test and Standards Manual (ASTM Manual Series, Fredericksburg, VA, USA, 1995), p. 149.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bautista.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bautista, A., Arahuetes, E., Velasco, F. et al. Oxidation Behavior of Highly Porous Metallic Components. Oxid Met 70, 267–286 (2008). https://doi.org/10.1007/s11085-008-9120-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-008-9120-3

Keywords

Navigation