Skip to main content
Log in

Carbon Permeability of Nickel and Ni–Cu Alloys

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

A Ni–20Cr alloy and variants containing 5, 10 and 20Cu (all in wt.%) were carburised in H2-5% CH4 at 1,000 °C. All alloys formed internal carburisation zones containing Cr3C2 and Cr7C3. The Ni–20Cr alloy also developed a surface deposit of graphite, but the copper-bearing alloys did not. Measured parabolic rate constants for intragranular carburisation were used to calculate carbon permeabilities from Wagner’s diffusion analysis. The value obtained for Ni–20Cr was in good agreement with the product of independently measured carbon solubility and diffusion coefficient values for nickel. Permeabilities found for copper-bearing alloys were similar, showing that the presence of copper had little effect on carbon diffusion in nickel. This finding is used in analysing the mechanism by which nickel undergoes metal dusting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C. A. Bernardo, I. Alstrup, and J. R. Rostrup-Nielsen, Journal of Catalysis 96, 517 (1985).

    Article  CAS  Google Scholar 

  2. I. Alstrup, M. T. Tavares, C. A. Bernardo, O. Sørensen, and J. R. Rostrup-Nielsen, Materials and Corrosion 49, 367 (1998).

    Article  CAS  Google Scholar 

  3. J. A. Dalmon and G. A. Martin, Journal of Catalysis 66, 214 (1980).

    Article  CAS  Google Scholar 

  4. M. T. Tavares, I. Alstrup, and C. A. Bernard, Materials and Corrosion 50, 681 (1999).

    Article  CAS  Google Scholar 

  5. J. Zhang, D. M. I. Cole, and D. J. Young, Materials and Corrosion 56, 756 (2005).

    Article  CAS  Google Scholar 

  6. J. Zhang and D. J. Young, Corrosion Science 49, 1450 (2007).

    Article  CAS  Google Scholar 

  7. Y. Nishiyama, K. Moriguchi, N. Otsuka, and T. Kudo, Materials and Corrosion 56, 806 (2005).

    Article  CAS  Google Scholar 

  8. DKI German Copper Institute Booklet, Copper Nickel Alloys: Properties, Processing, Application. http://www.copper.org/applications/cuni/txt_DKI.html.

  9. R. B. McLellan and P. Chraska, Materials Science and Engineering 6, 176 (1970).

    Article  CAS  Google Scholar 

  10. C. Wagner, Zeitschrift Fur Elektrochemie 63, 772 (1959).

    CAS  Google Scholar 

  11. T. Wada, H. Wada, J. F. Elliott, and J. Chipman, Metal Transition 2A, 2199 (1971).

    Google Scholar 

  12. A. T. Allen and D. L. Douglass, Oxidation of Metals 51, 199 (1999).

    Article  CAS  Google Scholar 

  13. K. Monma, H. Suto, and H. Oikawa, Nippon Kinzoku Gakkaishi 28, 188 (1964).

    Google Scholar 

  14. D. J. Young, High Temperature Oxidation and Corrosion of Metals (Elsevier, in press).

  15. P. Villars, A. Prince, and H. Okamoto, Handbook of Ternary Alloy Phase Diagrams (ASM International, USA, 1997).

    Google Scholar 

  16. W. B. Pearson and L. T. Thompson, Canadian Journal of Physics 35, 349 (1957).

    CAS  Google Scholar 

Download references

Acknowledgements

Support of this study by the Australian Research Council is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Young.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Safarzadeh, M. & Young, D.J. Carbon Permeability of Nickel and Ni–Cu Alloys. Oxid Met 70, 15–24 (2008). https://doi.org/10.1007/s11085-008-9108-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-008-9108-z

Keywords

Navigation