Skip to main content
Log in

Modelling the Spalling of Oxide Scales During Hot Rolling of Steel Strip

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Production of hot rolled steel strip is carried out at temperatures at which oxidation is prone to occur. The oxide crust is subjected to stresses that are originated while growing or are due to the difference between the thermal expansion coefficients of steel and oxide. It is considered that the oxide crust will be in tension when the temperature at the surface of the steel increases and in compression when it decreases. These stresses may cause cracking, buckling and spalling of the oxide. Oxidation to hematite occurs very rapidly once the crust is detached from the surface of the steel, and, in some cases oxide dust clouds will be formed. A model was developed to predict the magnitude and nature of the stresses within the oxide layer considering the temperature changes that take place while the material is being rolled. The model predicts that the oxide crust will deform when compressed and may cause its spalling and, once this occurs it will be expected to form oxide dust clouds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R. Y. Chen and W. Y. D. Yuen, Oxidation of Metals 59, 433 (2003).

    Article  CAS  Google Scholar 

  2. J. T. H. Ellingham, Journal of the Society of Chemistry and Industry 63, 125 (1944).

    Article  CAS  Google Scholar 

  3. F. D. Richardson and H. Jeffes, Journal of Iron and Steel Institute 160, 261 (1948).

    CAS  Google Scholar 

  4. C. Wagner, Atom Movements (Am. Soc. Met., Metals Park, 1951).

  5. K. Stanley, J. von Hoene, and R. T. Huntoon, Transactions of ASM 43, 426 (1951).

    Google Scholar 

  6. F. Lorang, Revue Universelle des Mines 17, 514 (1961).

    Google Scholar 

  7. O. Kubaschewsky and B. E. Hopkins, Oxidation of Metals and Alloys (Butterworths, 1962), p. 231.

  8. N. Birks and A. Nicholson, Iron Steel Institute Special Publication 123 (Iron Steel Inst., London, 1970), p. 219.

  9. K. W. Browne, J. Dryden, and M. Assefpour, in R.-M. Guo and J. J. Too (eds.), Recent Advances in Heat Transfer and Micro-Structure Modelling for Metal Processing, MD-Vol. 67, (ASME, 1995), p. 187.

  10. H. T. Abuluwefa, R. I. L. Guthrie, and F. Ajersch, Metallurgical and Materials Transactions A 28A, 1643 (1997).

    Article  CAS  Google Scholar 

  11. N. B. Pilling and R. E. Bedworth, Journal of Institute Metals 29, 529 (1923).

    Google Scholar 

  12. E. A. Gulbransen and S. A. Jansson, in D. L. Douglass (ed.), Oxidation of Metals and Alloys (Am. Soc. Metals, Metals Park, 1970), p. 63.

  13. S. A. Bradford, Fundamentals of Corrosion in Gases, Vol. 13. (ASM Handbook, Corrosion, ASM International, Materials Park, 1992), p. 122.

  14. S. R. J. Saunders and J. R. Nicholls, in R.W. Cahn and P. Haasen (eds.), Physical Metallurgy, 4th Ed. (Elsevier, Amsterdam, 1996), p. 1291.

  15. A. S. Khanna, Introduction to High Temperature Oxidation and Corrosion (ASM International. Materials Park, 2002).

  16. M. I. Manning, in V. Guttmann and M. Merz (eds.), Corrosion and Mechanical Stresses High Temperatures (Appl. Sc. Pub., London, 1981), p. 324.

  17. M. I. Manning, Corrosion Science 21, 301 (1981).

    Article  CAS  Google Scholar 

  18. M. Schütze, Oxidation of Metals 24, 199 (1985).

    Article  Google Scholar 

  19. H. E. Evans, International Materials Review 40, 1 (1995).

    CAS  Google Scholar 

  20. M. Schütze, Oxidation of Metals 44, 29 (1995).

    Article  Google Scholar 

  21. S. R. Pillai, N. S. Barasi, H. S. Khatak, and J. B. Gnanamoorthy, Oxidation of Metals 49, 509 (1998).

    Article  CAS  Google Scholar 

  22. W. Roberts, Hot Rolling of Steel (M. Dekker, Inc., New York, 1982).

  23. W. Ginzburg, Steel Rolling: Theory and Practice (M. Dekker, Inc., New York, 1989).

  24. F. Hollander, Mathematical Models in Metallurgical Process Development (Iron Steel Inst. Pub. 123, London, 1970), p. 46.

  25. C. M. Sellars, Materials Science and Technology 1, 325 (1985).

    CAS  Google Scholar 

  26. C. M. Sellars, in S. Yue (ed.), Mathematical Modelling of Hot Rolling of Steel (CIM, 1980), p. 1.

  27. R. Colás, Modelling and Simulation in Materials Science and Engineering 3, 437 (1995).

    Article  Google Scholar 

  28. R. Colás, Materials Science and Technology 14, 388 (1998).

    Google Scholar 

  29. P. C. Zambrano, A. L. Delgado, M. P. Guerrero-Mata, R. Colás, and L. A. Leduc, ISIJ International 43, 1030 (2003).

    Article  CAS  Google Scholar 

  30. M. Torres and R. Colás, Journal of Materials Processing Technology 105, 258 (2000).

    Article  Google Scholar 

  31. R. Taylor, C. M. Fowler, and R. Rolls, International Journal of Thermophysics 1, 225 (1980).

    Article  CAS  Google Scholar 

  32. G. E. Dieter, Mechanical Metallurgy, 2nd Ed. (McGraw-Hill, New York, 1981).

    Google Scholar 

  33. C. M. Sellars and J. W. Whiteman, Metals Technology 8, 10 (1981).

    CAS  Google Scholar 

  34. J. Slowik, G. Borchard, C. Köhler, and R. Scholz, Steel Research 7, 302 (1990).

    Google Scholar 

  35. J. Paidassi, Rev. Métall. 54, 2 (1957).

    Google Scholar 

  36. F. Lorang, Revue de Metallurgie 54, 569 (1957).

    Google Scholar 

  37. Y. Hidaka, T. Anraku, and N. Otsuka, Oxidation of Metals 59, 97 (2003).

    Article  CAS  Google Scholar 

  38. L. Suárez-Fernández, Growth and Deformation of Oxide Scale on Steel. Ph.D. Thesis (University of Ghent, Belgium, 2007).

  39. F. Matsuno, Transactions of the Iron and Steel Institute of Japan 20, 413 (1980).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the support provided by the Fondo Nacional de Desarrollo Científico y Tecnológico, FONDECYT, Chile, to the project 1060008. Colás thanks the support from the Programa de Apoyo a la Investigación Científica y Tecnológica, PAICYT, UANL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Colás.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de la Garza, M., Artigas, A., Monsalve, A. et al. Modelling the Spalling of Oxide Scales During Hot Rolling of Steel Strip. Oxid Met 70, 137–148 (2008). https://doi.org/10.1007/s11085-008-9107-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-008-9107-0

Keywords

Navigation