Skip to main content
Log in

Development of an Experimental Device to Study High Temperature Oxidation

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

An experimental device was designed and constructed to study the oxidation behaviour of steel. The device consists in a special chamber mounted within the frame of a servo-hydraulic testing machine holding the sample being studied. The atmosphere within the chamber can be controlled to be either inert or oxidation by flowing either nitrogen or dry air: a flow of 14 Nl/min was used for replacing either atmosphere in less than 0.1 s. The sample of steel was heated up to the testing temperature by induction. The testing procedure was designed to be flexible enough for heating up and cooling down the sample without oxidation. The device allowed for scales that ranged from a few micrometers to close to 300 μm. The growth kinetics recorded in this work was found to agree with previous published data. It can be concluded that the present device allows for studying the behaviour of thin crusts of steel oxide, which are classified as tertiary and can damage the surface of the steel during rolling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. K. Stanley, J. von Hoene, and R. T. Huntoon, Transactions of ASM 43, 426 (1951).

    Google Scholar 

  2. F. Païdassi, Revue de Metallurgie 54, 569 (1957).

    Google Scholar 

  3. O. Kubaschewsky and B. E. Hopkins, Oxidation of Metals and Alloys (Butterworths, London, 1962).

    Google Scholar 

  4. N. Birks and A. Nicholson, Iron Steel Inst. Sp. Pub. 123 (Iron Steel Inst., London, 1970), p. 219.

  5. K. W. Browne, J. Dryden, and M. Assefpour, in R.-M. Guo and J. J. Too (eds.), Recent Advances in Heat Transfer and Micro-Structure Modelling for Metal Processing, MD-Vol. 67 (ASME, New York, 1995), p. 187.

  6. H. T. Abuluwefa, R. I. L. Guthrie, and F. Ajersch, Metallurgical and Materials Transactions A 28A, 1643 (1997).

    Article  CAS  Google Scholar 

  7. R. Y. Chen and W. Y. D. Yuen, Oxidation of Metals 53, 539 (2000).

    Article  CAS  Google Scholar 

  8. R. Colás, Materials Science and Technology 14, 388 (1998).

    Google Scholar 

  9. R. Y. Chen and W. Y. D. Yuen, Oxidation of Metals 59, 433 (2003).

    Article  CAS  Google Scholar 

  10. R. Y. Chen and W.Y.D. Yuen, ISIJ International 45, 52 (2005).

    Article  CAS  Google Scholar 

  11. R. Battarcharya, G. Jha, S. Kundu, R. Shankar, and N. Gope, Surface & Coatings Technology 201, 526 (2006).

    Article  CAS  Google Scholar 

  12. M. Krzyzanowski, J. H. Beynon, and C. M. Sellars, Metallurgical and Materials Transactions B 31B, 1483 (2000).

    Article  CAS  Google Scholar 

  13. H. Li and C. M. Sellars, Materials Science and Technology 18, 304 (2002).

    Article  CAS  Google Scholar 

  14. Y. Yu and G. J. Lenard, Journal of Materials Processing Technology 121, 60 (2002).

    Article  CAS  Google Scholar 

  15. H. Echsler, S. Ito, and M. Schütze, Oxidation of Metals 60, 241 (2003).

    Article  CAS  Google Scholar 

  16. A. Airod, H. Vandekinderen, J. Barros, R. Colás, and Y. Houbaert, Journal of Materials Processing Technology 134, 398 (2003).

    Article  CAS  Google Scholar 

  17. P. R. Calvillo, T. Ros-Yanez, D. Ruiz, R. Colás, and Y. Houbaert, Materials Science and Technology 22, 1105 (2006).

    Article  CAS  Google Scholar 

  18. R. Colás and C. M. Sellars, Journal of Testing and Evaluation 15, 342 (1987).

    Article  Google Scholar 

  19. M. S. Mirza and C. M. Sellars, Materials Science and Technology 17, 1133 (2001).

    Article  CAS  Google Scholar 

  20. G. V. Samsonov, The Oxide Handbook (Plenum Press, New York, 1973).

    Google Scholar 

  21. P. A. Munther and J. G. Lenard, Journal of Materials Processing Technology 88, 105 (1999).

    Article  Google Scholar 

  22. M. Schütze, Oxidation of Metals 44, 29 (1995).

    Article  Google Scholar 

  23. H. J. Whittaker, Hot working and recrystallisation of 3% silicon steel, Ph.D. Thesis, Univ. Sheffield, UK, 1973.

  24. S. Akta, G. J. Richardson, and C. M. Sellars, ISIJ International 45, 1666 (2005).

    Article  CAS  Google Scholar 

  25. D. Filatov, O. Pawelski, and E. Rasp, Steel Research International 75, 20 (2004).

    CAS  Google Scholar 

  26. M. Kryzanowski and J. H. Beynon, Steel Research 70, 22 (1999).

    Google Scholar 

  27. M. Kryzanowski, C. M. Sellars, and J. H. Beynon, in E. J. Palmiere, M. Mahfouf, and C. Pinna (eds.), Thermomechanical Processing: Mechanics, Microstructure and Control (U. Sheffield, Sheffield, 2002), p. 94.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Colás.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suárez, L., Houbaert, Y., Vanden Eynde, X. et al. Development of an Experimental Device to Study High Temperature Oxidation. Oxid Met 70, 1–13 (2008). https://doi.org/10.1007/s11085-008-9105-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-008-9105-2

Keywords

Navigation