Skip to main content
Log in

Kinetics of Oxidation of Fe–6Si

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Surface oxidation of Fe–6Si during annealing in low-pressure air (∼10Pa) in the temperature range 500–550 °C was investigated using resistivity measurements, Mössbauer spectroscopy, X-ray diffraction and scanning-electron microscopy (SEM). The time dependence of the resistivity exhibits an increase in two steps, which indicates changes in the structure and/or phase composition of the alloy. Structure and phase investigations show that the first step can be explained as formation of hematite (α-Fe2O3) and the second step is due to transformation of the hematite to magnetite (Fe3O4). The kinetics of the transformations were derived from the resistivity data. The activation energies (estimated from Arrhenius plots) of 194 kJ/mol and 165 kJ/mol were obtained for the formation of hematite and transformation of hematite to magnetite, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S. Suzuki, K. Yanagihara, S. Yamazaki, K. Tanaka, and Y. Waseda, Surface and Interface Analysis 35, 276 (2003).

    Article  CAS  Google Scholar 

  2. J. H. Yu, J. S. Shin, J. S. Bae, Z.-H. Lee, T. D. Lee, H. M. Lee, and E. J. Lavernia, Materials Science and Engineering A 307, 29 (2001).

    Article  Google Scholar 

  3. D. Ruiz, R. E. Vandenberghe, T. Ros-Yáñez, E. De Grave, and Y. Houbaert, Hyperfine Interactions 168, 1037 (2006).

    Article  CAS  Google Scholar 

  4. A. H. Kasama, C. Bolfarini, C. S. Kiminami, and W. J. B. Filho, Materials Science and Engineering A 449/451, 375 (2007).

    Article  CAS  Google Scholar 

  5. J. S. Shin, J. S. Bae, H. J. Kim, H. M. Lee, T. D. Lee, E. J. Lavernia, and Z. H. Lee, Materials Science and Engineering A 407, 282 (2005).

    Article  CAS  Google Scholar 

  6. T. Adachi and G. H. Meier, Oxidation of Metals 27, 347 (1987).

    Article  CAS  Google Scholar 

  7. J. Kučera and M. Hajduga, High Temperature and Long Time Oxidation of Iron and Steels (Wydawnictwo PŁ Filia W Bielsku-Białej, 1998), p. 15.

  8. I. Svedung and N. G. Vannerberg, Corrosion Science 14, 391 (1974).

    Article  CAS  Google Scholar 

  9. M. Diéz-Ercilla, T. Ros-Yáñez, R. Pertrov, Y. Houbaert, and R. Colás, Corrosion Engineering, Science and Technology 39, 295 (2004).

    Article  CAS  Google Scholar 

  10. C. W. Tuck, Corrosion Science 5, 643 (1965).

    Article  Google Scholar 

  11. A. Atkinson, Corrosion Science 22, 87 (1982).

    Article  CAS  Google Scholar 

  12. F. Gesmundo and F. Viani, Oxidation of Metals 25, 269 (1986).

    Article  CAS  Google Scholar 

  13. R. C. Loani and W. W. Smeltzer, Oxidation of Metals 3, 15 (1971).

    Article  Google Scholar 

  14. R.C. Logani and W.W. Smeltzer, Oxidation of Metals 3, 279 (1971).

    Article  CAS  Google Scholar 

  15. T. Amano, K. Yamada, M. Okazaki, M. Takeda, and T. Onishi, Materials Science Forum 461/464, 169 (2004).

    Article  Google Scholar 

  16. K. Yanagihara, S. Suzuki, and S. Yamazaki, Oxidation of Metals 57, 281 (2002).

    Article  CAS  Google Scholar 

  17. T. Žák, in NATO Advanced Research Workshop on Mössbauer Spectroscopy in Materials Science (1998), eds. M. Miglierini and P. Petridis (Kluwer Academic Publishers, Dordrecht, 1999), p. 385.

  18. JCPDS PDF-4 database, ICDD Newtown Square, PA, USA, release 2005 (2005).

  19. ICSD database FIZNIST Karlsruhe, Germany, release 2005 (2005).

  20. M. B. Stearns, Physical Review 129, 1136 (1963).

    Article  CAS  Google Scholar 

  21. L. Häggström, L. Grånäs, R. Wäppling, S. Devanarayanan, Physica Scripta 7, 125 (1973).

    Article  Google Scholar 

  22. O. Schneeweiss, S. Havlíček, T. Žák, in NATO Advanced Research Workshop on Mössbauer Spectroscopy in Materials Science (1998), eds. M. Miglierini and P. Petridis (Kluwer Academic Publishers, Dordrecht, 1999), p. 337.

  23. L. H. Bowen, E. De Grave, and R. E. Vandenberghe, in Mössbauer Spectroscopy Applied to Magnetism and Materials Science (1998), eds. G. J. Long and F. Grandjean, Vol. 1 (Plenum Press, New York, 1993), p. 115.

  24. P. Gütlich, in Mössbauer Spectroscopy, ed. U. Gonser,Vol. 1 (Springer, Berlin, 1975), p. 53.

  25. K. D. Becker, Solid State Ionics 141/142, 21 (2001).

    Article  Google Scholar 

  26. R. M. Cornell and U. Schwertmann, The Iron Oxides Structure, Properties, Reactions, Occurrence and Uses, 2nd edn. (Wiley-VCH GmbG & Co. KGaA, 2003), p. 158.

  27. A. G. Guy and J. J. Hren, Elements of Physical Metallurgy, 3rd edn. (Addison-Wesley Publishing Company Inc., 1974), p. 523.

  28. K. Piotrowski, T. Wiltowski, K. Mondal, L. Stonawski, T. Szymanski, and D. Dasgupta, Barazlian Journal of Chemical Engineering 22, 419 (2005).

    CAS  Google Scholar 

  29. J. Janowski, A. Barański, and A. Sadowiski, ISIJ International 36, 269 (1996).

    Article  CAS  Google Scholar 

  30. A. F. Gualtieri, M. Gemmi, and M. Dapiaggi, American Mineralogist 88, 1560 (2003).

    CAS  Google Scholar 

  31. P. Kofstad, High Temperature Corrosion (Elsevier Applied Science Publishers Ltd., 1988), p. 138.

  32. A. A. El-Geassy, K. A. Shehata, and S. Y. Ezz, ISIJ International 50, 329 (1977).

    CAS  Google Scholar 

  33. J. Malek, Journal of Thermal Analysis and Calorimetry 56, 763 (1999).

    Article  CAS  Google Scholar 

  34. C. Tomasi, M. Scavini, A. Speghini, M. Bettinelli, and M. P. Riccardi, Journal of Thermal Analysis and Calorimetry 70, 151 (2002).

    Article  CAS  Google Scholar 

  35. A. Koniger, C. Hammer, A. Wenzel, B. Stritzker, and B. Rauschenbach, Nuclear Instruments and Methods in Physical Research, Sect. B 127/128, 137 (1997).

    Article  Google Scholar 

  36. D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys, 2nd edn. (Nelson Thornes U.K., 2001), p. 56.

Download references

Acknowledgement

This work was supported by the Grant Agency of the Academy of Sciences of the Czech Republic No. IAA1041404.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Lashin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lashin, A.R., Schneeweiss, O. & Svoboda, M. Kinetics of Oxidation of Fe–6Si. Oxid Met 69, 359–374 (2008). https://doi.org/10.1007/s11085-008-9102-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-008-9102-5

Keywords

Navigation