Skip to main content
Log in

Oxidation Mechanisms of Copper and Nickel Coated Carbon Fibers

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Differential-Thermal Analysis (DTA) and X-ray diffraction analysis were applied to determine the mechanisms of high-temperature oxidation of copper- and nickel-coated carbon fibers. Both kinds of coatings were deposited by electroless plating onto the fiber surface. The as-deposited copper film was crystalline, whereas the nickel coating consisted of an amorphous Ni–P alloy. Coated fibers were heated from room temperature to 900 °C in air at 10 °C min−1. For the copper coating, the main oxidation product formed at low temperatures was Cu2O, while at higher temperatures was CuO. The crystallization of Ni–P took place at 280–360 °C with the formation of Ni and Ni3P. The final compounds were NiO, Ni2P and Ni3(PO4)2. After complete oxidation of the carbon fibers, copper and nickel-oxidized microtubes were obtained. Besides, while copper reduced the temperature of the fiber oxidation, nickel coatings increased the minimum temperature needed for this reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Ureña, J. Rams, M. D. Escalera, and M. Sánchez, Boletín de la Sociedad Española de Cerámica y Vidrio 43(2), 409 (2004).

    Google Scholar 

  2. J. Rams, A. Ureña, M. D. Escalera, and M. Sánchez, Composites Part A: Applied Science and Manufacturing 38(2), 566 (2007).

    Article  Google Scholar 

  3. S. Abraham, B. C. Pai, K. G. Satyanarayana, and V. K. Vaidyan, Journal of Materials Science 27(13), 3479 (1992).

    Article  CAS  Google Scholar 

  4. T. Suzuki, H. Umehara, R. Hayashi, and S. Watanabe, Journal of Materials Research 8(10), 2492 (1993).

    Article  CAS  Google Scholar 

  5. P. Stefanik and P. Sebo, Journal of Materials Science Letters 12(14), 1083 (1993).

    Article  CAS  Google Scholar 

  6. S. Abraham, B. C. Pai, K. G. Satyanarayana, and V. K. Vaidyan, Journal of Materials Science 25(6), 2839 (1990).

    Article  CAS  Google Scholar 

  7. R. Asthana and P. K. Rohatgi, Journal of Materials Science Letters 12(6), 442 (1993).

    Article  CAS  Google Scholar 

  8. S. S. Tzeng, Carbon 44(10), 1986 (2006).

    Article  CAS  Google Scholar 

  9. G. Hackl, H. Gerhard, and N. Popovska, Thin Solid Films 513(1–2), 217 (2006).

    Article  CAS  Google Scholar 

  10. G. O. Mallory, Electroless Plating: Fundamentals and Applications (American Electroplaters and Surface Finishers Society, Orlando, 1990), pp. 289–329.

  11. M O’Reilly, X. Jiang, J. T. Beechinor, S. Lynch, C. N. Ní Dheasuna, J. C. Patterson, and G. M. Crean, Applied Surface Science 91(1–4), 152 (1995).

    Article  CAS  Google Scholar 

  12. B. Gillot, K. El Amri, P. Pouderoux, J. P. Bonino, and A. Rousset, Journal of Alloys and Compounds 189(2), 151 (1992).

    Article  CAS  Google Scholar 

  13. M. Wierzbicka and A. Malecki, Journal of Thermal Analysis and Calorimetry 55(3), 981 (1999).

    Article  CAS  Google Scholar 

  14. A. Malecki and M. Wierzbicka, Journal of Thermal Analysis and Calorimetry 65(2), 367 (2001).

    Article  CAS  Google Scholar 

  15. D. R. Lide, CRC Handbook of Chemistry and Physics a Ready-reference Book of Chemical and Physical Data (Taylor & Francis, 2006), pp. 5-53–5-54.

  16. H. X. Li, W. J. Wang, H. Y. Chen, and J. F. Deng, Journal of Non-Crystalline Solids, 281(1–3), 31 (2001).

    Article  CAS  Google Scholar 

  17. F. A. Cotton, G. Wilkinson, C. A. Murillo, and M. Bochmann, Advanced Inorganic Chemistry, 6th edn. (John Wiley & Sons Inc., Chichester, 1999), p. 525.

    Google Scholar 

  18. L. Liu, T. J. Zhang, K. Cui, and Y. D. Dong, Journal of Materials Research 14(10), 4062 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank both, the MEC for the financial support given to this work (Project MAT2004-06018) and the CAM (Project S-0505/MAT/0077).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ureña.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez, M., Rams, J. & Ureña, A. Oxidation Mechanisms of Copper and Nickel Coated Carbon Fibers. Oxid Met 69, 327–341 (2008). https://doi.org/10.1007/s11085-008-9100-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-008-9100-7

Keywords

Navigation