Abstract
Binary Fe–Cr alloys containing 10 and 20 mass% Cr were studied with respect to isothermal oxidation behavior at 900 and 1,050 °C in Ar–20%O2, Ar–7%H2O and Ar–4%H2−7%H2O. Thermogravimetric analyses in combination with analytical studies using SEM/EDX and Raman Spectroscopy revealed, that in atmospheres in which water vapor is the source of oxygen, Cr exhibits a higher tendency to become internally oxidized than in the Ar–O2 gas. Contrary to previous studies which showed the presence of water vapor to affect transport processes in the scale, the present results thus reveal that the presence of water vapor also affects the transport processes in the alloy. This mechanism is an “easy” explanation of the frequently observed effect that Fe–Cr alloys with intermediate Cr contents (e.g. 10–20%, depending on temperature) exhibit protective chromia-rich scale formation in dry gases but breakaway type Fe-rich oxides in wet gases, provided the oxygen partial pressure is sufficiently high for Fe to become oxidized.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
G. Hultquist, B. Tveten, and E. Hörnlund, Oxidation of Metals 54, 1 (2000).
S. Henry, J. Mougin, Y. Wouters, J.-P. Petit, and A. Galerie, Materials at High Temperature 17, 231 (2000).
M. Michalik, M. Hänsel, J. Zurek, L. Singheiser, and W. J. Quadakkers, Materials at High Temperature 22, 213 (2005).
B. Tveten, G. Hultquist, and T. Norby, Oxidation of Metals 51, 221 (1999).
S. Henry, A. Galerie, and L. Antoni, Materials Science Forum 369–372, 353 (2001).
J. Żurek, D. J. Young, E. Essuman, M. Hänsel, H. J. Penkalla, L. Niewolak, and W. J. Quadakkers, Growth and adherence of chromia-based surface scales on Ni-base alloys in high- and low-pO2 gases, Materials Science and Engineering (in press). doi:10.1016/j.msea.2007.05.035.
C. S. Tedmon, Journal of the Electrochemical Society 113, 766 (1966).
K. Hilpert, D. Das, M. Miller, D. H. Peck, and R. Weiss, Journal of the Electrochemical Society 143, 3642 (1996).
H. Asteman, J.-E. Svensson, M. Norell, and L.-G. Johansson, Oxidation of Metals 54, 11 (2000).
H. Asteman, J.-E. Svensson, and L.-G. Johansson, Corrosion Science 44, 2635 (2002).
H. Asteman, J.-E. Svensson, and L.-G. Johansson, Oxidation of Metals 57, 193 (2002).
J. E. Segerdahl, J.-E. Svensson, and L.-G. Johansson, Materials and Corrosion 53, 247 (2002).
J. Ehlers, D. J. Young, E. J. Smaardijk, A. K. Tyagi, H. J. Penkalla, L. Singheiser, and W. J. Quadakkers, Corrosion Science 48, 3428 (2006).
A. Rahmel, and J. Tobolski, Corrosion Science 5, 333 (1965).
A. Galerie, Y. Wouters, and M. Caillet, Materials Science Forum 369–372, 231 (2001).
M. Schütze, D. Renusch, and M. Schorr, Corrosion Engineering, Science and Technology 39, 157 (2004).
A. D. Pelton, H. Schmalzried, and J. Sticher, Journal of Physics and Chemistry of Solids 40, 1103 (1979).
C. T. Fujii and R. A. Meussner, Journal of the Electrochemical Society 111, 1215 (1964).
C. T. Fujii and R. A. Meussner, Journal of the Electrochemical Society 110, 1195 (1963).
J. Żurek, M. Michalik, F. Schmitz, T.-U. Kern, L. Singheiser, and W. J. Quadakkers, Oxidation of Metals 63(5/6), 401 (2005).
I. G. Wright, in Metals Handbook, Vol. 13, 9th edn. (ASM, Metals Park, OH, 1987), p. 97.
E. Kunze, Korrosion und Korrosionsschutz (Wiley-VCH, Germany, 2001).
R. J. Ehlers, P. J. Ennis, L. Singheiser, W. J. Quadakkers, and T. Link, in Proceedings in European Federation of Corrosion Monograph. No. 34. M. Schütze, W. J. Quadakkers, and J. Nicholls, eds. (The Institute of Materials, London, 2001) p. 178, ISSN 1354–5116.
C. Wagner, Journal of the Electrochemical Society 99, 369 (1956).
R. A. Rapp, Acta Metallurgica 9, 730 (1961).
F. Gesmundo, and F. Viani, Oxidation of Metals 25, 269 (1986).
C. Wagner, Zeitschrift für Elektrochemie 63, 772 (1959).
J. H. Swisher and E. T. Turkdogan, Transactions of the Metallurgical Society AIME 239, 426 (1967).
E. Fromm and E. Gebhardt, Gase und Kohlenstoff in Metallen (Springer Verlag, Berlin, 1976).
D. P. Whittle, G. C. Wood, D. J. Evans, and D. B. Scully, Acta Metallurgica 15, 1747 (1967).
M. C. Maris-Sida, G. H. Meier, and F. S. Pettit, Metallurgical and Materials Transactions A 34A, 2609 (2003).
K. Nakagawa, Y. Matsunaga, and T. Yanagisawa, Materials at High Temperature 18, 51 (2001).
K. Nakagawa, Y. Matsunaga, and T. Yanagisawa, Materials at High Temperature 20, 67 (2003).
Z. Yang, M. S. Walker, P. Singh, and J. W. Stevenson, Electrochemical Solid State Letters 6, B35 (2003).
W. Eichenauer, H. Künzig, and A. Pebler, Zeitschrift für Metallkunde 49, 220 (1958).
E. Park, B. Hüning, H. J. Grabke, and M. Spiegel, Defect and Diffusion Forum 237–240, 928 (2005).
J. Ågren, Scripta Metallurgica 20, 1507 (1986).
D. J. Young and B. A. Pint, Oxidation of Metals 66(3/4), 137 (2006).
M. Schütze, M. Schorr, D. P. Renusch, and J. P. T. Vossen, Materials Research 7(1), 111 (2004).
R. Peraldi and B. A. Pint, Oxidation of Metals 61(5/6), 463 (2004).
M. Thiele, H. Teichmann, W. Schwarz, and W. J. Quadakkers, VGB Kraftwerkstechnik 77, 135 (1997).
Y. Ikeda and K. Nii, Transactions of National Research Institute for Metals 26(1), 52 (1984).
A. Galerie, S. Henry, Y. Wouters, M. Mermoux, J.-P. Petit, and L. Anton, Materials at High Temperatures 22, 105 (2005).
M. Ueda, M. Nanko, K. Kawamura, and T. Maruyama, Materials at High Temperatures 20(2), 109 (2003).
S. Hayashi, and T. Narita, Oxidation of Metals 58(3/4), 319 (2002).
Acknowledgements
The authors are grateful to Mr. Cosler for carrying out the TG tests, Mr. Wessel for SEM analyses, Mr. Niewolak and Mr. Piron-Abellan for their assistance in carrying out the LRS studies.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Essuman, E., Meier, G.H., Żurek, J. et al. The Effect of Water Vapor on Selective Oxidation of Fe–Cr Alloys. Oxid Met 69, 143–162 (2008). https://doi.org/10.1007/s11085-007-9090-x
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11085-007-9090-x