Skip to main content
Log in

Nano/Micro-Laminated (ZrO2–Y2O3)/(Al2O3–Y2O3) Composite Coatings and Their Oxidation Resistance

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Nano/micro-laminated (ZrO2–Y2O3)/(A12O3–Y2O3) composite coatings were deposited onto an Fe–25Cr–7Ni–N alloy substrate by using alternate electrochemical and sintering processes. The thickness of each layer was in the range of 80–500 nm. Experimental results indicated that the multi-laminated coatings were more effective in providing oxidation resistance than monolithic ZrO2–Y2O3 or A12O3–Y2O3 coatings, with the oxidation resistance of the former increasing with increasing number of laminated layers. The microstructural studies suggest that the laminated coatings possess the advantages of these two types of coatings and avoid the weakness of single ZrO2–Y2O3 or A12O3–Y2O3 coatings. Reactive elements Y and Zr also played a role in this nano-layered setting in improving the oxidation resistance of the coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. Kawaoka, T. Adachi, and T. Sekino, Journal of Materials Research 16, 2264 (2001).

    CAS  Google Scholar 

  2. J. S. Hong, X. X. Huang, and J. K. Gou, Journal of Materials Science 31, 4847 (1996).

    Article  CAS  Google Scholar 

  3. X. H. Jin, L. Gao, and L. H. Gui, Journal of Materials Research 17, 1024 (2002).

    CAS  Google Scholar 

  4. A. Haseeb, J. P. Celis, and J. R. Roos, Journal of the Electrochemical Society 141, 230 (1994).

    Article  CAS  Google Scholar 

  5. A. S. Haseeb, J. P. Celis, and J. R. Roos, Materials and Manufacturing Processes 10, 707 (1995).

    CAS  Google Scholar 

  6. J. P. Celis, K. Van Acker, K. Callewaert, and P. Van Houtte, Journal of the Electrochemical Society 142, 70 (1995).

    Article  CAS  Google Scholar 

  7. D. S. Yan, Y. S. Zheng, and L. Gao, Journal of Materials Science 33, 2719 (1998).

    Article  CAS  Google Scholar 

  8. J. Zhao, L. C. Stearns, M. P. Harmer, H. M. Chan, and G. A. Miller, Journal of the American Ceramic Society 76, 503 (1993).

    Article  CAS  Google Scholar 

  9. G. Pezzotti, and M. Sakai, Journal of the American Ceramic Society 77, 3039 (1994).

    Article  Google Scholar 

  10. I. Levin, W. D. Kaplan, D. G. Brandon, and A. A. Layyou, Journal of the American Ceramic Society 78, 254 (1995).

    Article  CAS  Google Scholar 

  11. D. R. Lesuer, C. K. Syn, O. D. Sherby, J. Wadsworth, J. J. Lewandowski, and W. H. Hunt, International Materials Reviews 41, 169 (1996).

    CAS  Google Scholar 

  12. J. Wadsworth, and D. R. Lesuer, Materials Characterization 45, 289 (2000).

    Article  CAS  Google Scholar 

  13. X. Lu, Ph.D. Thesis, Journal of University of Science and Technology Beijing, China, (1993).

  14. X. Lu, Y. He, and R. Zhu, Chinese Patent 93100181.1, (1993).

  15. Y. He, and F. H. Stott, Corrosion Science 36, 1869 (1994).

    Article  Google Scholar 

  16. Y. He, and F. H. Stott, Corrosion Science 38, 1853 (1996).

    Article  Google Scholar 

  17. X. Lu, R. Zhu, and Y. He, Surface & Coatings Technology 79, 19 (1996).

    Article  CAS  Google Scholar 

  18. X. Lu, R. Zhu, and Y. He, Oxidation of Metals 43, 217 (1995).

    Article  CAS  Google Scholar 

  19. X. Lu, R. Zhu, and Y. He, Oxidation of Metals 43, 353 (1995).

    Article  CAS  Google Scholar 

  20. H. B. Qi, and D. G. Lees, Oxidation of Metals 53, 507 (2000).

    Article  CAS  Google Scholar 

  21. Z. Li, W. Gao, S. Li, D. Zhang, and Y. He, Oxidation of Metals 56, 495 (2001).

    Article  CAS  Google Scholar 

  22. J. Ma, Y. He, D. Wang, and W. Gao, Materials Letters 58, 807 (2004).

    Article  CAS  Google Scholar 

  23. P. Stefanov, D. Stoychev, I. Valov, A. Kakanakova-Georgieva, and Ts. Marinova, Materials Chemistry and Physics 65, 222 (2000).

    Article  CAS  Google Scholar 

  24. I. Espitia-Cabrera, H. Orozco-Hernández, and R. Torres-Sánchez, Materials Letters 58, 191 (2003).

    Article  Google Scholar 

  25. D. Stoychev, P. I. Valov, Stefanov, G. Atanasova, M. Stoycheva, and Ts. Marinova, Materials Science and Engineering C 23, 123 (2003).

    Google Scholar 

  26. D. Stoychev, P. Stefanov, D. Nikolova, A. Aleksandrova, G. Atanasova, and Ts. Marinova, Surface & Coatings Technology 180–181, 441 (2004).

    Article  Google Scholar 

  27. P. Stefanov, G. Atanasova, D. Stoychev, and Ts. Marinova, Surface & Coatings Technology 180–181, 446 (2004).

    Article  Google Scholar 

  28. Z. Chen, N. Q. Wu, J. Singh, and S. X. Mao, Thin Solid Films 443, 46 (2003).

    Article  CAS  Google Scholar 

  29. Bahlawane N., Thin Solid Films 396, 126 (2001).

    Article  CAS  Google Scholar 

  30. H. Li, K. Liang, L. Mei, and S. Gu, Materials Science and Engineering A341, 87 (2003).

    CAS  Google Scholar 

  31. R. Di Maggio, L. Fedrizzi, S. Rossi, and P. Scardi, Thin Solid Films 286, 127 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant No. 50271010) and Beijing Key Laboratory for Corrosion, Erosion and Surface Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, M., He, Y., Wang, D. et al. Nano/Micro-Laminated (ZrO2–Y2O3)/(Al2O3–Y2O3) Composite Coatings and Their Oxidation Resistance. Oxid Met 68, 1–8 (2007). https://doi.org/10.1007/s11085-007-9057-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-007-9057-y

Keywords

Navigation