Skip to main content
Log in

Oxidation Behavior of Pt–Ir Modified Aluminized Coatings on Ni-base Single Crystal Superalloy TMS-82+

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation resistance of Pt–Ir modified aluminized coatings, prepared by magnetron sputtering, was investigated. Cyclic oxidation tests revealed that Pt–30 at%Ir and Pt–50 at%Ir modified aluminide coatings demonstrated a smaller mass change compared with Pt, Pt–80 at%Ir and Ir modified aluminide coatings. Cross-sectional analyses following cyclic oxidation tests showed that the TGO layer formed on the Pt modified aluminide coating surface is almost twice as thick as those on the Pt–30 at%Ir and Pt–50 at%Ir coatings. In addition, the Pt–30 at%Ir and Pt–50 at%Ir samples had a much smoother surface than the Pt modified coatings after cyclic oxidation, and the latter suffered from severe surface rumpling. However, when the Ir content exceeded 80 at% in Pt–Ir modified coatings, internal voids formed during cyclic oxidation. These results show that the addition of 30–50 at%Ir to Pt-modified aluminized coatings is most effective in enhancing oxidation resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. J. Stinger, N. M. Yanar, M. G. Topping, F. S. Pettit, and G. H. Meier, Zeitschrift fur Metallkunde 12 1069–1078 (1999).

    Google Scholar 

  2. N. M. Yanar, G. H. Meier, and F. S. Pettit, Scripta Materialia 46, 325–330 (2002).

    Article  CAS  Google Scholar 

  3. J. H. Chen, and J. A. Little, Surface and Coatings Technology 92, 69–77 (1997).

    Article  CAS  Google Scholar 

  4. C. Leyens, U. Schultz, B. A. Pint, and I. G. Wright, Surface and Coatings Technology 120–121, 68–76 (1999).

    Article  Google Scholar 

  5. G. R. Krishna, D. K. Das, V. Singh, and S. V. Joshi, Materials Science and Engineering A 251, 40–47 (1998).

    Article  Google Scholar 

  6. Y. Zhang, J. A. Haynes, W. Y. Lee, I. G. Wright, B. A. Pint, K. M. Cooley, and P. K. Liaw, Metallurgical and Materials Transactions A 32A, 1727–1741 (2001).

    Article  CAS  Google Scholar 

  7. P. Deb, D. H. Boone, and T. F. Manley,Journal of Vacuum Science and Technology A 5(6), 3366–3372 (1987).

    Article  CAS  Google Scholar 

  8. V. K. Tolpygo, and D. R. Clarke, Acta Materialia 48, 3283–3293 (2000).

    Article  CAS  Google Scholar 

  9. T. M. Pollock, Materials Science and Engineering B B32, 255–266 (1995).

    Article  CAS  Google Scholar 

  10. Y. Matsuoka, Y. Aoki, K. Matsumoto, A. Satou, T. Suzuki, K. Chikugo, and K. Murakami, in Superalloys. K. A. Green, T. M. Pollock, H. Harada, T. E. Howson, R. C. Reed, J. J. Shirra, and S. Walston, eds. (The Minerals, Metals, Materials Society, Warrendale, Pittsburg, 2004), pp. 637–642.

  11. H. Murakami, A. Suzuki, F. Wu, P. Kuppusami, and H. Harada, in Superalloys. K. A. Green, T. M. Pollock, H. Harada, T. E. Howson, R. C. Reed, J. J. Shirra, and S. Walston, eds. (The Minerals, Metals, Materials Society, Warrendale, Pittsburg, 2004), pp. 589–596.

  12. F. Wu, H. Murakami, Y. Yamabe-Mitarai, H. Harada, H. Katayama, and Y. Yamamoto, Surface and Coatings Technology 184, 24–30 (2004).

    Article  CAS  Google Scholar 

  13. A. Suzuki, M. Harada, Y. N. Wu, and H. Murakami, Materials Transactions JIM 46(8), 1760–1763 (2005).

    Article  CAS  Google Scholar 

  14. H. Hosoda, T. Takahashi, M. Takehara, T. Kingetsu, and H. Masumoto, Materials Transactions JIM 10, 871 (1997).

    Google Scholar 

  15. T. Hino, T. Kobayashi, Y. Koizumi, H. Harada, and T. Yamagata, in Superalloy. K. A. Green, T. M. Pollock, and R. D. Kissinger, eds. (The Minerals, Metals, Materials Society, Warrendale, Pittsburg, 2000), pp. 729–736.

  16. T. Hino, Y. Yoshioka, Y. Koizumi, T. Kobayashi, and H. Harada, in Materials for Advanced Power Engineering. J. Lecomte-Beckers et al., eds. (Liege, Belguim, Julich, Forschumgszentrum, 2002), pp. 303–312.

  17. M. Ode, H. Murakami, and H. Onodera, Scripta Materialia 52(10), 1057–1062 (2005).

    Article  CAS  Google Scholar 

  18. J. Benoist, K. F. Badawi, A. Malie, and C. Ramade, Surface and Coatings Technology 194, 48–57 (2005).

    Article  CAS  Google Scholar 

  19. S. Hayashi, S. Ford, D. J. Young, D. J. Sordelet, M. F. Besser, and B. Gleeson,Acta Materialia 53(11), 3319–3328 (2005).

    Article  CAS  Google Scholar 

  20. Y. Zhang, J. A. Haynes, W. Y. Lee, I. G. Wright, B. A. Pint, K. M. Cooley, and P. K. Liaw, Metallurgical and Materials Transactions A 32A, 1727–1741 (2001).

    Article  CAS  Google Scholar 

  21. K. Vaidyanathan, E. H. Jordan, and M. Gell, Acta Materialia 52, 1107–1115 (2004).

    Article  CAS  Google Scholar 

  22. K. W. Schlichting, N. P. Padture, E. H. Jordan, and M. Gell,Materials Science and Engineering A 342, 120–130 (2003).

    Article  Google Scholar 

  23. V. K. Tolpyogo, and D. R. Clarke, Acta Materialia 52(17), 5115–5127 (2004).

    Google Scholar 

  24. R. Panat, K. J. Hsia, and J Oldham, Philosophical Magazine 85(1), 45–64 (2005).

    Article  CAS  Google Scholar 

  25. Y. Yamabe-Mitarai, and H. Aoki, Materials Letters 56, 781–786 (2002).

    Article  CAS  Google Scholar 

  26. J .D. Brazzle, W. P. Taylor, B. Ganesh, J. J. Price, and J. J. Berstein, Journal of Micromechanics and Microengineering 15, 43–48 (2005).

    Article  CAS  Google Scholar 

  27. M. S. A. Karunaratne, and R. C. Reed, Acta Materialia 51, 2905–2919 (2003).

    CAS  Google Scholar 

  28. F. Wu, H. Murakami, and H. Harada, Materials Transactions 44(9), 1675–1678 (2003).

    Article  CAS  Google Scholar 

  29. P. Kuppusami, and H. Murakami, Surface and Coatings Technology 186(3), 377–388 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A part of this work has been carried out under the auspices of JSPS Grants-in Aid for Scientific Research, Grant-No. 16360343. The authors would like to acknowledge Profs. D. Young, T. Narita, and B. Gleeson for fruitful discussions and suggestions. The authors also thank Dr. H. Harada for supplying substrate Ni-base single-crystal superalloy TMS-82+.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aya Suzuki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, A., Wu, Y., Yamaguchi, A. et al. Oxidation Behavior of Pt–Ir Modified Aluminized Coatings on Ni-base Single Crystal Superalloy TMS-82+. Oxid Met 68, 53–64 (2007). https://doi.org/10.1007/s11085-007-9056-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-007-9056-z

Keywords

Navigation