Skip to main content
Log in

High-Temperature Scaling of Cu–Al and Cu–Cr–Al Alloys: An Example of a Non-Classical Third-Element Effect

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation of three Cu–xCr–2Al and three Cu–xCr–4Al alloys (x ≅ 0,4,8 at.%) has been investigated at 800°C in 1 atm O2. Oxidation of a binary Cu–Al alloy containing 2.2 at.% Al produced external scales composed mainly of copper oxides with small amounts of Al-rich oxide in the inner region, while the internal oxidation of Al was almost absent. The addition of 3.9 at.% Cr to this alloy was able to decrease the oxidation rate but was insufficient to prevent the oxidation of copper. Conversely, addition of 8.1 at.% Cr to the same binary alloy promoted the rather fast formation of a protective Al2O3 layer in contact with the metal substrate, with a simultaneous large decrease in the oxidation rate, producing a form of third-element effect. On the contrary, all the Cu–xCr–4Al alloys formed an internal Al2O3 layer after an initial stage during which all the alloy components were oxidized, so that the only effect of the presence of chromium was to decrease the duration of the fast initial stage. The third-element effect due to chromium additions to Cu–2Al is related to a transition from the formation of external scales composed of mixtures of Cu and Al oxides to the external growth of Al2O3–rich scales as a consequence of a thermodynamic destabilization of copper oxides associated with the formation of solid solutions between Al2O3 and Cr2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

References

  1. Dunn J. S. (1934) Journal of the Institute of Metals 46:25

    Google Scholar 

  2. Frohlich K. W. (1936) Zeitschrift for Metallkunde 28:368

    CAS  Google Scholar 

  3. Price L. E., Thomas G. J. (1938) Journal of the Institute of Metals 63:21

    Google Scholar 

  4. Dennison J. P., Preece A. (1952) Journal of the Institute of Metals 81:229

    Google Scholar 

  5. Blade J. C., Preece A. (1959) Journal of the Institute of Metals 88:427

    Google Scholar 

  6. Sanderson M. D., Scully J. C. (1971) Oxidation of Metals 3:59

    Article  CAS  Google Scholar 

  7. Hauffe K., Ofulue E. (1972) Werkstoffe Und Korrosion – Materials and Corrosion 23:351

    Article  CAS  Google Scholar 

  8. Massalski T. B. (1990) Binary Alloy Phase Diagrams. ASM International, Metals Park

    Google Scholar 

  9. Niu Y., Gesmundo F., Douglass D. L., Viani F. (1997) Oxidation of Metals 48:357

    Article  CAS  Google Scholar 

  10. Gesmundo F., Viani F., Niu Y. (1994) Oxidation of Metals 42:409

    CAS  Google Scholar 

  11. Gesmundo F., Niu Y., Viani F. (1995) Oxidation Metals 43:379

    Article  CAS  Google Scholar 

  12. Gesmundo F., Niu Y., Viani F., Douglass D. L. (1998) Oxidation of Metals 49:147

    Article  CAS  Google Scholar 

  13. Fu G. Y., Niu Y., Gesmundo F. (2003) Corrosion Science 45:559

    Article  CAS  Google Scholar 

  14. Villars P., Prince A., Okamoto H. (eds) (1997) Handbook of Ternary Alloy Phase Diagrams. ASM International, Metals, Park, USA

    Google Scholar 

  15. Gesmundo F., De Asmundis C., Merlo S. (1979) Werkstoffe Und Korrosion – Materials and Corrosion 30:114

    Article  CAS  Google Scholar 

  16. Tomaszewicz P., Wallwork G. R. (1983) Oxidation of Metals 19:165

    Article  CAS  Google Scholar 

  17. Gesmundo F., Niu Y. (1998) Oxidation Metals 50:1

    Article  CAS  Google Scholar 

  18. Wagner C. (1959) Zeitschrift Fur Elektrochemie 63:772

    CAS  Google Scholar 

  19. Rapp R. A. (1961) Acta Metallurgica 9:730

    Article  CAS  Google Scholar 

  20. Rapp R. A. (1965) Corrosion 21:382

    CAS  Google Scholar 

  21. Gesmundo F., Viani F. (1986) Oxidation of Metals 25:269

    Article  CAS  Google Scholar 

  22. Maak F. (1961) Zeitschrift Fur Metallkunde 52:538

    CAS  Google Scholar 

  23. Crank J. (1965) The Mathematics of Diffusion. Clarendon Press, Oxford

    Google Scholar 

  24. Tarula M. L., Tare V. B., Worrell W. L. (1983) Metallurgical Transactions B 14B:673

    Google Scholar 

  25. Rhines F. N., Mehl R. F. (1938) Transactions of the Metallurgical Society of AIME 128:185

    Google Scholar 

  26. Hirone T., Kunitomi N., Sakamoto M., Yamaki H. (1958) Journal of the Physical Soceity of Japan 13:838

    Article  CAS  Google Scholar 

  27. Wagner C. (1952) Journal of the Electrochemicals Society 99:369

    CAS  Google Scholar 

  28. Wagner C. (1965) Corrosion Science 5:751

    Article  CAS  Google Scholar 

  29. Stott F. H., Wood G. C., Stringer J. (1995) Oxidation of Metals 44:113

    Article  CAS  Google Scholar 

  30. Zhang G. Z., Gesmundo F., Hou P. H., Niu Y. (2006) Corrosion Science 48:741

    Article  CAS  Google Scholar 

  31. Levin E. M., Robbins C. R., McMurdie H. F. (eds) (1964) Phase Diagrams for Ceramists. The American Ceramic Society, Columbus, Ohio

    Google Scholar 

  32. Niu Y., Gesmundo F. (2001) Oxidation of Metals 56:517

    Article  CAS  Google Scholar 

  33. Wagner C. (1969) Corrosion Science 9:91

    Article  CAS  Google Scholar 

  34. Bastow B. D., Whittle D. P., Wood G. C. (1977) Proceeding of the Royal of London Series A 356:177

    CAS  Google Scholar 

  35. Wagner C. (1959) Journal of Electrochemical Soceity 103:627

    Google Scholar 

Download references

Acknowledgements

A financial support by the National Natural Scientific Foundation of China (NSFC) under the grants (Nos. 50271079 and 50571107) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Niu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niu, Y., Wang, S. & Gesmundo, F. High-Temperature Scaling of Cu–Al and Cu–Cr–Al Alloys: An Example of a Non-Classical Third-Element Effect. Oxid Met 65, 285–306 (2006). https://doi.org/10.1007/s11085-006-9012-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-006-9012-3

Keywords

Navigation