Skip to main content
Log in

Mechano-Chemical Aspects of High Temperature Oxidation: A Mesoscopic Model Applied to Zirconium Alloys

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

A model is developed in order to study the influence of mechanical aspects during high temperature oxidation of zirconium alloys. This model accounts for oxygen diffusion within the metal and across the oxide scale. Much attention is paid on the role of the Zr–O solid solution on oxidation kinetics and on the role of mechanical anisotropy. The model shows that stresses developed in the metal, due to oxygen dissolution, have a strong influence on oxidation rates. In particular, a change of crystallographic orientation of the metal leads to a change in stress gradients which is responsible for differences in oxidation rates. Such results are confirmed by experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Grandjean Y. Serruys (1999) Journal of Nuclear Materials 273 111 Occurrence Handle10.1016/S0022-3115(99)00036-7

    Article  Google Scholar 

  2. Godlewski J., Ph.D Thesis, Université de Technologie de Compiègne, France (1990).

  3. Debuigne J., Ph.D Thesis, Université de Paris, France (1966).

  4. Jacquot T., Guillen R., Francois M., Bourniquel B., and Senevat J., in Proceedings of the fourth European Powder Diffraction Conference Materials Science Forum p. 845 (1996).

  5. C. Valot D. Ciosmak M. Lallemant (1997) Solid State Ionics 101–103 769 Occurrence Handle10.1016/S0167-2738(97)00292-0

    Article  Google Scholar 

  6. Godlewski J., Bouvier P., Lucazeau G., and Fayette L., in Zirconium in the Nuclear Industry, Twelfth International Symposium (American Society for Testing and Materials (ASTM) special technical publication) p. 877 (2000).

  7. I. Salles-Desvignes T. Montesin C. Valot J. Favergeon G. Bertrand A. Vadon (2000) Acta Materialia 48 1505 Occurrence Handle10.1016/S1359-6454(99)00446-2

    Article  Google Scholar 

  8. Bossis P., Ph.D Thesis, Institut National Polytechnique de Grenoble, France (1999).

  9. Foord D.T., and Newcomb S.B., in Proceedings of the Third International Conference on the Microscopy of Oxidation (The Institute of Materials, London, UK) p. 488 (1997).

  10. L. Pichon T. Girardeau F. Lignou A. Straboni (1999) Thin Solid Films 342 93 Occurrence Handle10.1016/S0040-6090(98)01425-4

    Article  Google Scholar 

  11. H.E. Evans D.J. Norfolk T. Swan (1978) Journal of Electrochemical Society: Solid-State Science and Technology 125 IssueID7 1180

    Google Scholar 

  12. Godlewski J., Gros J.P., Lambertin M., Wadier J.F., and Weidinger H., in Zirconium in the Nuclear Industry, Ninth International Symposium (American Society for Testing and Materials (ASTM) special technical publication) p. 416 (1991).

  13. A.J.G. Maroto R. Bordoni M. Villegas A.M. Olmedo M.A. Blesa A. Iglesias P. Koenig (1996) Journal of Nuclear Materials 229 79 Occurrence Handle10.1016/0022-3115(95)00233-2

    Article  Google Scholar 

  14. T. Arima K. Moriyama N. Gaja H. Furuya K. Idemitsu Y. Inagaki (1998) Journal of Nuclear Materials 257 67 Occurrence Handle10.1016/S0022-3115(98)00069-5

    Article  Google Scholar 

  15. B. Cox (1976) Advances in Corrosion Science and Technology 5 173

    Google Scholar 

  16. A.P. Zhilyaev J.A. Szpunar (1999) Journal of Nuclear Materials 264 327 Occurrence Handle10.1016/S0022-3115(98)00478-4

    Article  Google Scholar 

  17. H.I. Yoo B.J. Koo J.O. Hong I.S. Hwang Y.H. Jeong (2001) Journal of Nuclear Materials 299 235 Occurrence Handle10.1016/S0022-3115(01)00695-X

    Article  Google Scholar 

  18. C. Dollins M. Jursich (1983) Journal of Nuclear Materials 113 19 Occurrence Handle10.1016/0022-3115(83)90161-7

    Article  Google Scholar 

  19. N.L. Peterson (1978) Journal of Nuclear Materials 69–70 3 Occurrence Handle10.1016/0022-3115(78)90234-9

    Article  Google Scholar 

  20. G.P. Sabol S.G. Mac Donald G.P. Airey (1974) American Society for Testing and Materials – STP 551 435

    Google Scholar 

  21. Sabol G.P., and Dalgaard S.B., Journal of Electrochemical Society: Solid-State Science and Technology 316 (1975).

  22. E.A. Garcia J. Kovacs (1994) Journal of Nuclear Materials 210 78 Occurrence Handle10.1016/0022-3115(94)90225-9

    Article  Google Scholar 

  23. E.A. Garcia (1995) Journal of Nuclear Materials 224 299 Occurrence Handle10.1016/0022-3115(95)00073-9

    Article  Google Scholar 

  24. M. Tupin F. Valdivieso M. Pijolat M. Soustelle A. Frichet P. Barberis (2003) Journal of Nuclear Materials 317 130 Occurrence Handle10.1016/S0022-3115(02)01704-X

    Article  Google Scholar 

  25. I. Salles-Desvignes G. Bertrand T. Montesin J. Favergeon (2000) Solid State Phenomena 72 9

    Google Scholar 

  26. I. Sallès-Desvignes T. Montesin J. Favergeon G. Bertrand (2001) Materials Science Forum 369–372 451

    Google Scholar 

  27. F.C. Larché J.W. Cahn (1982) Acta Metallurgica 30 1835 Occurrence Handle10.1016/0001-6160(82)90023-2

    Article  Google Scholar 

  28. J. Favergeon I. Sallès-Desvignes T. Montesin G. Bertrand (2001) Defect and Diffusion Forum 194–199 1017

    Google Scholar 

  29. P. Boisot G. Béranger (1969) Compte Rendu de l’Académie des Sciences de Paris 269 587

    Google Scholar 

  30. E.S. Fischer C.J. Renken (1964) Physical Review 135 IssueID2A 482 Occurrence Handle10.1103/PhysRev.135.A482

    Article  Google Scholar 

  31. M. Tremblay C. Roy (1973) Materials Science and Engineering 12 235 Occurrence Handle10.1016/0025-5416(73)90034-7

    Article  Google Scholar 

  32. Laborderie C., and Jeanvoine E., Technical Report, CEA Saclay (France), DRN/DMT/94–356 (1994).

  33. P. Berger R. El Tahhann G. Moulin M. Viennot (2003) Nuclear Instruments and Methods in Physics Research B 210 519

    Google Scholar 

  34. Valot C., Ph.D Thesis, Université de Bourgogne, Dijon, France (1995).

  35. B. Li A.R. Allnatt C.S. Zhang P.R. Norton (1995) Surface Science 330 276 Occurrence Handle10.1016/0039-6028(95)00052-6

    Article  Google Scholar 

  36. Debuigne J., Guerlet J.P., and Lehr P., in IXème Colloque de Métallurgie – Etude sur la Corrosion et la Protection du Zirconium et de ses Alliages (Presses Universitaires de France, Paris, France), p. 9 (1965).

  37. M. Parise O. Sicardy G. Cailletaud (1998) Journal of Nuclear Materials 256 35 Occurrence Handle10.1016/S0022-3115(98)00045-2

    Article  Google Scholar 

  38. Desvignes I., Ph.D Thesis, Université de Bourgogne, Dijon, France (1999).

  39. Tassot P., La revue de metallurgie C.I.T, p. 81 (1988).

  40. H. Tomaszewski K. Godwod (1995) Journal of the European Ceramic Society 15 17 Occurrence Handle10.1016/0955-2219(95)91295-Y

    Article  Google Scholar 

  41. J. Stefan (1891) Annalen der Physik und Chemie 42 269

    Google Scholar 

  42. J. Favergeon C. Valot T. Montesin G. Bertrand (2002) Materials Science Forum 408–412 999

    Google Scholar 

  43. S. Chevalier G. Strehl J. Favergeon F. Desserrey S. Weber O. Heintz G. Borchardt J.P. Larpin (2003) Materials at High Temperatures 20 IssueID3 253

    Google Scholar 

  44. Favergeon J., Montesin T., Valot C., and Bertrand G., in Defect and Diffusion in Metals, an Annual Retrospective IV, Defect and Diffusion Forum 203–205, 231 (2002).

  45. G. Rosa P. Psyllaki R. Oltra T. Montesin C. Coddet S. Costil (2001) Surface Engineering 17 332 Occurrence Handle10.1179/026708401101517881

    Article  Google Scholar 

  46. T. Montesin J. Favergeon F. Desserrey C. Valot J.P. Larpin G. Bertrand (2003) Defect and Diffusion Forum 216–217 19

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Favergeon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Favergeon, J., Montesin, T. & Bertrand, G. Mechano-Chemical Aspects of High Temperature Oxidation: A Mesoscopic Model Applied to Zirconium Alloys. Oxid Met 64, 253–279 (2005). https://doi.org/10.1007/s11085-005-6563-7

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-005-6563-7

Keywords

Navigation