Skip to main content
Log in

Cyclic-Oxidation Resistance of Protective Silicide Layers on Titanium

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Titanium was powder siliconized and gas nitrided, in order to improve its cyclic-oxidation resistance. Siliconizing was performed in a pure-silicon powder at temperatures in the range of 800–1100° C for 3–48 h. Gas nitriding was carried out in pure N2 at 1100° C/12 h. Cyclic-oxidation experiments with the siliconized and nitrided samples were conducted in air at 850 and 950° C for up to 560 h. It was found that the siliconized layers grew according to the parabolic law with the activation energy for siliconizing E S being 47.2 kJ mol−1. Powder siliconizing at 900–1100° C/3 h produced multi-phase layers, in which Ti5Si3 silicide predominated The siliconizing temperature of 800° C/3 h appeared to be insufficient, because it led to a non-uniform surface layer with a slight protective effect. The nitrided layers were composed of titanium nitride TiN and α-Ti(N) intestitial solid solution. Measurement of the oxidation kinetics revealed that the titanium siliconized at 900–1100° C/3 h oxidized much more slowly than pure Ti, Ti–6Al–4V alloy and nitrided titanium. Microstructural investigation revealed the complex sub-structure of the scales on the siliconized samples which was composed of rutile+silica, rutile and nitrogen-rich sub-layers. The mechanism of high-temperature cyclic oxidation of the siliconized and nitrided titanium is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Materials Science and Technology, Volume 8—Structure and Properties of Nonferrous Alloys (VCH Verlagsgesellschaft mbH, Weinheim, 1996).

  2. ASM Handbook, Volume 2 - Properties and Selection: Nonferrous Alloys and Special-Purpose Materials (ASM International, 1990).

  3. J. Zhu A. Kamiya T. Yamada A. Watazu W. Shi K. Naganuma (2001) Materials Transcations 42 336 Occurrence Handle1:CAS:528:DC%2BD3MXis1ehtLY%3D

    CAS  Google Scholar 

  4. B. Lavelle F. Dabosi (1980) NoChapterTitle H. Kimura O. Izumi (Eds) Proc. Titanium 80 The Met. Soc. AIME Warrendale 2275

    Google Scholar 

  5. R. L. Saha T. K. Nandy R. D. K. Misra (1989) Scripta Metallurgica 23 81 Occurrence Handle1:CAS:528:DyaL1MXhtF2ntLw%3D

    CAS  Google Scholar 

  6. Mazur V.I., Sukhikh L.L., Firstov S.A., and Kulak L.D.,: in Proc. The Processing, Properties and Application of Metallic and Ceramic Materials, Vol. 1, Loretto M.H., C. J. Beevers, eds. (Engineering Materials Advisory Services Ltd., 1992), p. 141.

  7. D. B. Lee K. B. Park H. W. Jeong S. E. Kim (2002) Materials Science and Engineering A 328 161

    Google Scholar 

  8. A. M. Chaze C. Coddet (1987) Journal of Materials Science 22 1206 Occurrence Handle1:CAS:528:DyaL2sXksVCmurg%3D

    CAS  Google Scholar 

  9. A. M. Chaze C. Coddet (1987) Oxidation Metals 27 1 Occurrence Handle1:CAS:528:DyaL2sXhsVagsrw%3D

    CAS  Google Scholar 

  10. J. D. Majumdar A. Weisheit B. L. Mordike I. Manna (1999) Materials Science and Engineering A 266 123

    Google Scholar 

  11. W. Liang X. G. Zhao (2001) Scripta Materialia 44 1049 Occurrence Handle1:CAS:528:DC%2BD3MXjt12gs7c%3D

    CAS  Google Scholar 

  12. D. Vojtěch B. Bártová T. Kubatík (2003) Materials Science and Engineering A 361 50

    Google Scholar 

  13. J. D. Majumdar B. L. Mordike I. Manna (2000) Wear 242 18 Occurrence Handle1:CAS:528:DC%2BD3cXlsFeqs7w%3D

    CAS  Google Scholar 

  14. H. Dong A. Bloyce P. H. Morton T. Bell (1996) Science and Technology Proc. Titanium 95 IOM London 2007

    Google Scholar 

  15. M. R. Winstone R. D. Rawlings D. R. F. West (1975) Journal of Less Common Metals 39 205 Occurrence Handle1:CAS:528:DyaE2MXhtFCqurY%3D

    CAS  Google Scholar 

  16. N. D. Tomaschov O. A. Ziltschova R. C. Zalavutdynov A. E. Gorodeckij M. I. Guseva B. G. Vladimirov (1991) Zaschtita Metallov 27 1014

    Google Scholar 

  17. J. Baszkiewicz M. Kaminski J. Kozubovski D. Krupa K. Gosiewska A. Barcz G. Gavlik J. Jagielski (2000) Journal of Materials Science 35 767 Occurrence Handle1:CAS:528:DC%2BD3cXhtlWlsLo%3D

    CAS  Google Scholar 

  18. S. Taniguchi T. Kuwayama Y. C. Zhu Y. Matsumoto T. Shibata (2000) Materials Science and Engineering A 277 229

    Google Scholar 

  19. X. Y. Li S. Taniguchi Y. Matsunaga K. Nakagawa K. Fujita (2003) Intermetallics 11 143 Occurrence Handle1:CAS:528:DC%2BD38XpsV2qur0%3D

    CAS  Google Scholar 

  20. C. H. Koo T. H. Yu (2000) Surface and Coatings Technology 126 171 Occurrence Handle1:CAS:528:DC%2BD3cXisFarsbo%3D

    CAS  Google Scholar 

  21. S. Motojima M. Kohno T. Hattori (1987) Journal of Materials Science 22 770 Occurrence Handle1:CAS:528:DyaL2sXhvVSqs7s%3D

    CAS  Google Scholar 

  22. S. L. Kharatyan A. A. Chatilyan G. A. Voskerchan Z. A. Manasaryan (1997) Chemical Physics Report 16 1217

    Google Scholar 

  23. K. L. Choy (2003) Progress in Materials Science 48 57 Occurrence Handle1:CAS:528:DC%2BD38XoslChsL4%3D

    CAS  Google Scholar 

  24. B. Cockeram G. Wang (1995) Thin Solid Films 269 57 Occurrence Handle1:CAS:528:DyaK28XhvVGntA%3D%3D

    CAS  Google Scholar 

  25. K. Matsuura M. Kudoh (2002) Acta Materialia 50 2693 Occurrence Handle1:CAS:528:DC%2BD38XktFeqsro%3D

    CAS  Google Scholar 

  26. Binary Alloy Phase Diagrams (ASM, Metals Park, OH, 1986).

  27. Ch. Leyens M. Peters (2003) Titanium and Titanium Alloys WILEY-VCH GmbH Weinheim

    Google Scholar 

  28. J. J. Williams M. Akinc (2002) Oxidation of Metals 58 57 Occurrence Handle1:CAS:528:DC%2BD38XkvFehtLk%3D

    CAS  Google Scholar 

  29. R. Mitra V. Rao (1998) Metallurgical Materials Transactions A 29 1665

    Google Scholar 

  30. S. Taniguchi T. Minamida T. Shibata (1997) Materials Science Forum 251 IssueID254 227

    Google Scholar 

  31. R. W. Cahn P. Haasen (1996) Physical Metallurgy vol. 1 Elsevier Science B.V Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Vojtěch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vojtěch, D., Kubatík, T., Jurek, K. et al. Cyclic-Oxidation Resistance of Protective Silicide Layers on Titanium. Oxid Met 63, 305–323 (2005). https://doi.org/10.1007/s11085-005-4385-2

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-005-4385-2

Keywords

Navigation