Skip to main content
Log in

Isothermal and Step Isothermal Oxidation of Copper-Containing Steels in Air at 980–1220°C

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation and copper enrichment behaviors of several copper-containing mild steels under isothermal and step-isothermal conditions at 980–1220°C in ambient air, and the effects of nickel additions, are examined. The oxidation kinetics for all steels does not obey the parabolic law because of the formation of blisters in the scale. At 980°C, decreased parabolic oxidation kinetics is observed, whereas at 1120 and 1220°C, the oxidation kinetics exhibits an undulating pattern. High nickel content and high oxidation temperature are two prerequisites for the occlusion mechanism to operate during steel oxidation. For the low nickel steel, a planar scale-steel interface develops at all temperatures, and a copper phase is always seen to form and spread along the scale-steel interface. For the high nickel steels, a planar scale-steel interface develops at 980 and 1120°C, but at 1220°C, the scale-steel interface becomes rugged and the copper-rich phase is occluded into the scale. Introduction of a 980°C and/or 1220°C oxidation step significantly affects the copper enrichment behaviors of all steels normally exhibited at 1120°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. M. Smithyman (1996) Iron & Steelmaker 23 IssueID8 47

    Google Scholar 

  2. K. Noro M. Takeuchi Y. Mizukami (1997) ISIJ International 37 198

    Google Scholar 

  3. E. T. Stephenson (1983) Metallurgical Transaction A 14A 343

    Google Scholar 

  4. K. Sachs (1979) Metal Technology 6 33

    Google Scholar 

  5. L. Habraken, and J. Lecomte-Beckers, in Copper in Iron and Steel, I. Le May, and L. M. Schetky eds. (John Wiley & Sons, 1982), pp. 45–81.

  6. D. A. Melford (1980) Philosophical Transactions of the Royal Society London A 295 89

    Google Scholar 

  7. D. A. Melford (1962) Journal of the Iron Steel Institute 200 290

    Google Scholar 

  8. W. J. M. Salter (1966) Journal of the Iron Steel Institute 204 478

    Google Scholar 

  9. A. R. Cox J. M. Winn (1965) Journal of the Iron Steel Institute 203 175

    Google Scholar 

  10. A. Nicholson J. D. Murray (1965) Journal of the Iron Steel Institute 203 1007

    Google Scholar 

  11. M. I. Copeland, and J. E. Kelley, U.S. Bureau Mines Report of Investigations 7682 (United States Department of the Interior, 1972).

  12. P. J. Lewis (1993) Ironmaking and Steelmaking 20 126

    Google Scholar 

  13. R. Rolls A. Preece (1960) Metal Treatment and Drop Forging 27 139

    Google Scholar 

  14. D. A. Melford (1966) Journal of the Iron Steel Institute 204 495

    Google Scholar 

  15. M. I. Copeland, and J. S. Howe, U.S. Bureau Mines Report of Investigations 8080 (United States Department of the Interior, 1975)

  16. M. I. Copeland, U.S. Bureau Mines Report of Investigations 7936 (United States Department of the Interior, 1974).

  17. G. L. Fisher (1969) Journal of the Iron Steel Institute 207 1010

    Google Scholar 

  18. O. T. Llewellyn (1995) Ironmaking and Steelmaking 22 25

    Google Scholar 

  19. Metal-Induced Embrittlement, Metal Handbook, ASM International, 10th ed. (ASM International, Materials Park, Ohio, 1990), Vol. 1, p. 717.

  20. T. Kajitani M. Wakoh N. Tokumitsu S. Ogibayashi S. Mizoguchi (1995) Tetsu to Hagane 81 185

    Google Scholar 

  21. R. Y. Chen, and W. Y. D. Yuen, unpublished results, 1996.

  22. D. Caplan (1960) Journal of Electrochemistry Society 107 359

    Google Scholar 

  23. R. Y. Chen W. Y. D. Yuen (2003) Oxidation of Metals 59 433

    Google Scholar 

  24. T. Asai T. Soshiroda M. Miyahara (1997) ISIJ International 37 272

    Google Scholar 

  25. L. J. Swartzendruber, in Binary Alloy Phase Diagrams, T. B. Massalski, H. O. Okamoto, P. R. Subramanian, and L. Kacprzak, eds. (ASM International, 1990), pp. 1408–1410.

  26. B. D. Bastow D. H. Kirkwood (1971) Journal of the Institute of Metals 99 277

    Google Scholar 

  27. H. J. Grabke V. Leroy H. Viefhaus (1995) ISIJ International 35 95

    Google Scholar 

  28. Y. Zou E. W. Langer (1989) Materials Science and Engineering A 110 203

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Y. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, R.Y., Yuen, W.Y.D. Isothermal and Step Isothermal Oxidation of Copper-Containing Steels in Air at 980–1220°C. Oxid Met 63, 145–168 (2005). https://doi.org/10.1007/s11085-004-3197-0

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-004-3197-0

Keywords

Navigation