Skip to main content

Ribozyme Mutagenic Evolution: Mechanisms of Survival

Abstract

Primeval populations replicating at high error rates required a mechanism to overcome the accumulation of mutations and information deterioration. Known strategies to overcome mutation pressures include RNA processivity, epistasis, selection, and quasispecies. We investigated the mechanism by which small molecular ribozyme populations can survive under high error rates by propagating several lineages under different mutagen concentrations. We found that every population that evolved without mutagen went extinct, while those subjected to mutagenic evolution survived. To understand how they survived, we characterized the evolved genotypic diversity, the formation of genotype-genotype interaction networks, the fitness of the most common mutants for each enzymatic step, and changes in population size along the course of evolution. We found that the elevated mutation rate was necessary for the populations to survive in the novel environment, in which all the steps of the metabolism worked to promote the survival of even less catalytically efficient ligases. Besides, an increase in population size and the mutational coupling of genotypes in close-knit networks, which helped maintain or recover lost genotypes making their disappearance transient, prevented Muller's ratchet and extinction.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data Availability

Ribozyme data can be made available.

Code Availability

Scripts can be made available.

References

  • Attwater J, Wochner A, Pinheiro V, Coulson A, Holliger P (2010) Ice as a protocellular medium for RNA replication. Nat Commun 1:76

    Article  PubMed  Google Scholar 

  • Baaske P, Weinert F, Duhr S, Lemke K, Russell M, Braun D (2007) Extreme accumulation of nucleotides in simulated hydrothermal pore systems. Proc Natl Acad Sci USA 104:9346–9351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beckman R, Mildvan A, Loeb L (1985) On the fidelity of DNA replication: Manganese mutagenesis in vitro. Biochemistry 24:5810–5817

    Article  CAS  PubMed  Google Scholar 

  • Bendixsen DP, Collet J, Østman B, Hayden EJ (2019) Genotype network intersections promote evolutionary innovation. PLoS Biol 17:e3000300

  • Biebricher C, Eigen M (2005) The error threshold. Virus Res 107:117–127

    Article  CAS  PubMed  Google Scholar 

  • Bull JJ, Meyers LA, Lachmann M (2005) Quasispecies made simple. PLoS Comput Biol 6e61:0450–0460

  • Coffey L, Beeharry Y, Bordería A, Blanc H, Vignuzzi M (2011) Arbovirus high fidelity variant loses fitness in mosquitoes and mice. Proc Natl Acad Sci USA 108:16038–16043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dall’Olio GM, Bertranpetit J, Wagner A, Laayouni H (2014) Human genome variation and the concept of genotype networks. PLoS One 9:e99424

  • Diaz Arenas C, Lehman N (2010a) The continuous evolution in vitro technique. Curr Protoc Nucleic Acid Chem 40:971–9716

    Google Scholar 

  • Diaz Arenas C, Lehman N (2010b) Quasispecies-like behavior observed in catalytic RNA populations evolving in a test tube. BMC Evol Biol 10:80

    Article  PubMed  PubMed Central  Google Scholar 

  • Diaz Arenas C, Lehman N (2013) Partitioning the fitness components of RNA populations evolving in vitro. PLoS One 8(12):e84454

  • Domingo E, Sheldon J, Perales C (2012) Viral quasispecies evolution. Microbiol Mol Biol R 76:159–216

    Article  CAS  Google Scholar 

  • Domingo E, Perales C (2019) Viral quasispecies. PLoS Genet 15(10): e1008271

  • Eigen M, McCaskill J, Schuster P (1988) Molecular quasi-species. J Phys Chem 92:6881–6891

    Article  CAS  Google Scholar 

  • Eigen M, Schuster P (1977) The hypercycle. A principle of natural self- organization. Part A: Emergence of the hypercycle. Naturwissenschaften 64:541–565

    Article  CAS  PubMed  Google Scholar 

  • Ekland EH, Bartel DP (1995) The secondary structure and sequence optimization of an RNA ligase ribozyme. Nucleic Acids Res 23:3231–3238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Deiry WS, Downey KM, So AG (1984) Molecular mechanisms of manganese mutagenesis. Proc Natl Acad Sci USA 81:7378–7382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ewert M, Deming J (2011) Selective retention in saline ice of extracellular polysaccharides produced by the cold-adapted marine bacterium Colwellia psychrerythraea strain 34H. Ann Glaciol 52:111–117

    Article  CAS  Google Scholar 

  • Gerard G, Grandgenett D (1975) Purification and characterization of the DNA polymerase and RNaseH activities in Moloney murine sarcoma-leukemia virus. J Virol 15:785–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kun Á, Santos M, Szathmáry E (2005) Real ribozymes suggest a relaxed error threshold. Nature Genet 37:1008–1011

    Article  CAS  PubMed  Google Scholar 

  • Lauring A, Andino R (2010) Quasispecies theory and the behavior of RNA viruses. PLoS Pathogens 6:e1001005

  • Lauring A, Frydman J, Andino R (2013) The role of mutational robustness in RNA virus evolution. Nat Rev Microbiol 11:327–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehman N, Donne MD, West M, Dewey TG (2000) The genotypic landscape during in vitro evolution of a catalytic RNA: implications for phenotypic buffering. J Mol Evol 50:481–490

    Article  CAS  PubMed  Google Scholar 

  • Lynch M, Gabriel W (1990) Mutation load and the survival of small populations. Evolution 44:1725–1737

    Article  PubMed  Google Scholar 

  • Lynch M, Burger R, Butcher D, Gabriel W (1993) The mutational meltdown in asexual populations. J Hered 84:339–344

    Article  CAS  PubMed  Google Scholar 

  • Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10–12

  • Masel J (2006) Cryptic genetic variation is enriched for potential adaptations. Genetics 172:1985–1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller H (1950) Our load of mutations. Am J Hum Genet 2:111–176

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nowak M, Schuster P (1989) Error thresholds of replication in finite populations mutation frequencies and the onset of Muller’s ratchet. J Theor Biol 137:375–395

    Article  CAS  PubMed  Google Scholar 

  • Paaby AB, Rockman MV (2014) Cryptic genetic variation: evolution’s hidden substrate. Nat Rev Genet 15:247–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pechenick DA, Moore JH, Payne JL (2013) The influence of assortativity on the robustness and evolvability of gene regulatory networks upon gene birth. J Theor Biol 330:26–36

    Article  PubMed  PubMed Central  Google Scholar 

  • Pfeiffer J, Kirkegaard K (2005) Increased fidelity reduces poliovirus fitness and virulence under selective pressure in mice. PLoS Path 1e11

  • Rajamani S, Ichida J, Antal T, Treco D, Leu K, Nowak M, Szostak J, Chen I (2010) Effect of stalling after mismatches on the error catastrophe in nonenzymatic nucleic acid replication. J Am Chem Soc 132:5880–5885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reidys C, Forst C, Schuster P (2001) Replication and mutation on neutral networks. Bull Math Biol 63:57–94

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues JA Wagner (2009) Evolutionary plasticity and innovations in complex metabolic reaction networks. PLoS Comput Biol 5:e1000613

  • Santos M, Zintzaras E, Szathmáry E (2004) Recombination in primeval genomes: a step forward but still a long leap from maintaining a sizeable genome. J Mol Evol 59:507–519

    Article  CAS  PubMed  Google Scholar 

  • Sardanyés J, Elena S, Solé R (2008) Simple quasispecies models for the survival-of-the-flattest effect: The role of space. J Theor Biol 250:560–568

    Article  PubMed  Google Scholar 

  • Schmitt T, Lehman N (1999) Non-unity molecular heritability demonstrated by continuous evolution in vitro. Chem Biol 6:857–869

    Article  CAS  PubMed  Google Scholar 

  • Shechner DM, Grant RA, Bagby SC, Koldobskaya Y, Piccirilli JA, Bartel DP (2009) Crystal structure of the catalytic core of an RNA-polymerase ribozyme. Science 326:1271–1275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sohan J, Prakash J (2014) Prebiotic RNA Synthesis by Montmorillonite Catalysis. Life 4:318–330

    Article  Google Scholar 

  • Soll S, Díaz Arenas C, Lehman N (2007) Accumulation of deleterious mutations in small abiotic populations of RNA. Genetics 175:267–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stern A, Bianco S, Yeh M, Wright C, Butcher K, Tang C, Nielsen R, Andino R (2014) Costs and benefits of mutational robustness in RNA viruses. Cell Rep 8:1026–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stich M, Manrubia SC (2011) Motif frequency and evolutionary search times in RNA populations. J Theor Biol 280:117–126

    Article  CAS  PubMed  Google Scholar 

  • Szilágyi A, Kun Á, Szathmáry E (2014) Local neutral networks help maintain inaccurately replicating ribozymes. PLoS One 9e109987

  • Takeuchi N, Poorthuis PH, Hogeweg P (2005) Phenotypic error threshold; additivity and epistasis in RNA evolution. BMC Evol Biol 5:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Trimpert J, Groenke N, Kunec D, Eschke K, He S, McMahon D, Osterrieder N (2019) A proofreading-impaired herpesvirus generates populations with quasispecies-like structure. Nat Microbiol 4:2175–2183

    Article  PubMed  Google Scholar 

  • Trinks H, Schröder W, Biebricher C (2005) Ice and the origin of life. Orig Life Evol Biosph 35:429–445

    Article  CAS  PubMed  Google Scholar 

  • van Nimwegen E, Crutchfield JP, Huynen MA (1999) Neutral evolution of mutational robustness. Proc Natl Acad Sci USA 96:9716–9720

    Article  PubMed  PubMed Central  Google Scholar 

  • Vartanian J, Sala M, Henry M, Wain-Hobson S, Meyerhans A (1999) Manganese cations increase the mutation rate of human immunodeficiency virus type 1 ex vivo. J Gen Virol 80:1983–1986

    Article  CAS  PubMed  Google Scholar 

  • Vashishtha A, Konigsberg W (2018) Effect of different divalent cations on the kinetics and fidelity of DNA polymerases. AIMS Biophysics 5:272–289

    Article  CAS  Google Scholar 

  • Villareal LP, Witzany G (2013) Rethinking quasispecies theory: From fittest type to cooperative consortia. Worl J Biol Chem 4:79–90

    Article  Google Scholar 

  • Weinreich DM, Watson RA, Chao L (2005) Perspective: Sign epistasis and genetic constraint on evolutionary trajectories. Evolution 59:1165–1174

    CAS  PubMed  Google Scholar 

  • Wilke CO (2001) Selection for fitness versus selection for robustness in RNA secondary structure folding. Evolution 55:2412–2420

    CAS  PubMed  Google Scholar 

  • Wilke CO (2005) Quasispecies theory in the context of population genetics. BMC Evol Biol 5:44

    Article  PubMed  PubMed Central  Google Scholar 

  • Zakharcheva K, Gening L, Kazachenko K, Tarantul V (2017) Cells resistant to toxic concentrations of manganese have increased ability to repair DNA. Biochem Mosc 82:38–45

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Nucleic Acid Chemistry and Engineering, the Ecology and Evolution, and the Physics and Biology Units of the Okinawa Institute of Science and Technology Graduate University (OIST); the Japanese Society for the Promotion of Science KAKENHI Grant-in-Aid for Challenging Exploratory Research (grant number 16K14790) awarded to CDA; the Engineering and Physical Sciences Research Council, and the Medical Research Council (grant number EP/L016044/1) awarded to AA. We thank Robert Sinclair; and Jotun Hein (University of Oxford) for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

CDA, conception and design, performed the experiments, data analysis and discussion, manuscript writing; AA, scripts for data-processing and analysis, discussion, manuscript review; JM, ASM, YY, design, discussion, manuscript review.

Corresponding author

Correspondence to Carolina Diaz Arenas.

Ethics declarations

Conflicts of Interest/Competing Interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Diaz Arenas, C., Ardaševa, A., Miller, J. et al. Ribozyme Mutagenic Evolution: Mechanisms of Survival. Orig Life Evol Biosph 51, 321–339 (2021). https://doi.org/10.1007/s11084-021-09617-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11084-021-09617-0

Keywords

  • Ribozyme
  • Mutagenic evolution
  • Extinction
  • Genotypic diversity
  • Quasispecies