Skip to main content

Does Stochasticity Favour Complexity in a Prebiotic Peptide-Micelle System?

Abstract

A primordial environment that hosted complex pre- or proto-biochemical activity would have been subject to random fluctuations. A relevant question is then: What might be the optimum variance of such fluctuations, such that net progress could be made towards a living system? Since lipid-based membrane encapsulation was undoubtedly a key step in chemical evolution, we used a peptide-micelle system in simulated experiments where simple micelles and peptide-stabilized micelles compete for the same amphiphilic lipid substrate. As cyclic thermal driver and energy source we used a thermochemical redox oscillator, to which the micelle reactions are coupled thermally through the activation energies. The long-time series averages taken for increasing values of the fluctuation variance show two distinct minima for simple micelles, but are smoothly increasing for complex micelles. This result suggests that the fluctuation variance is an important parameter in developing and perpetuating complexity. We hypothesize that such an environment may be self-selecting for a complex, evolving chemical system to outcompete simple or parasitic molecular structures.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data Availability

These are available from the corresponding author.

References

  1. Bachmann PA, Luisi PL, Lang J (1992) Autocatalytic self-replicating micelles as models for prebiotic structures. Nature 357:57–59. https://doi.org/10.1038/357057a0

    CAS  Article  Google Scholar 

  2. Ball R, Brindley J (2014) Hydrogen peroxide thermochemical oscillator as driver for primordial RNA replication. J R Soc Interface 11:20131052. https://doi.org/10.1098/rsif.2013.1052

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Ball R, Brindley J (2015) The life story of hydrogen peroxide II: a periodic pH and thermochemical drive for the RNA world. J R Soc Interface 12:20150366. https://doi.org/10.1098/rsif.2015.0366

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Ball R, Brindley J (2017) Toy trains, loaded dice, and the origin of life: Dimerization on mineral surfaces under periodic drive with Gaussian inputs. R Soc Open Science 4:17041. https://doi.org/10.1098/rsos.170141

    CAS  Article  Google Scholar 

  5. Ball R, Brindley J (2020) Anomalous thermal fluctuation distribution sustains proto-metabolic cycles and biomolecule synthesis. Phys Chem Chem Phys 22:971. https://doi.org/10.1039/c9cp05756k

    CAS  Article  PubMed  Google Scholar 

  6. Ball R, Haymet ADJ (2001) Bistability and hysteresis in self-assembling micelle systems: phenomenology and deterministic dynamics. Phys Chem Chem Phys 3:4753–4761. https://doi.org/10.1039/b104483b

    CAS  Article  Google Scholar 

  7. Barratt C, Lapore DM, Cherubini MJ, Schwartz PM (2010) Computational models of thermal cycling in chemical systems. Int J Chemistry 2:19–27. https://doi.org/10.5539/ijc.v2n2p19

    CAS  Article  Google Scholar 

  8. Bartlett SJ, Beckett P (2019) Probing complexity: thermodynamics and computational mechanics approaches to origins studies. R Soc Interface Focus 9:20190058. https://doi.org/10.1098/rsfs.2019.0058

    Article  Google Scholar 

  9. Bracher P (2015) Primordial soup that cooks itself. Nat Chem 7:273–274. https://doi.org/10.1038/nchem.2219

    CAS  Article  PubMed  Google Scholar 

  10. Brack A (1993) From amino acids to prebiotic active peptides: A chemical reconstitution. Pure Appl Chem 65:1143–1151. https://doi.org/10.1351/pac199365061143

    CAS  Article  Google Scholar 

  11. Bywater RP (2009) Membrane-spanning peptides and the origin of life. J Theor Biol 261:407–413. https://doi.org/10.1016/j.jtbi.2009.08.001

    CAS  Article  PubMed  Google Scholar 

  12. Canavelli P, Islam S, Powner MW (2019) Peptide ligation by chemoselective aminonitrile coupling in water. Nature 571:546. https://doi.org/10.1038/s41586-019-1371-4

    CAS  Article  PubMed  Google Scholar 

  13. Chang M, Schmitz RA (1975) An experimental study of oscillatory states in a stirred reactor. Chem Eng Sci 30:21–34. https://doi.org/10.1016/0009-2509(75)85112-8)

    CAS  Article  Google Scholar 

  14. Colomer I, Borissov A, Fletcher SP (2020) Selection from a pool of self-assembling lipid replicators. Nat Commun 11:176. https://doi.org/10.1038/s41467-019-13903-x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Cronin L (2020) A new genesis for origins research? Chem 2:601–603. https://doi.org/10.1016/j.chempr.2017.04.014

    CAS  Article  Google Scholar 

  16. Deamer D (2017) The role of lipid membranes in life’s origin. Life 7:5. https://doi.org/10.3390/life7010005

    CAS  Article  PubMed Central  Google Scholar 

  17. Egel R (2009) Peptide-dominated membranes preceding the genetic takeover by RNA: latest thinking on a classic controversy. BioEssays 31:1100–1109. https://doi.org/10.1002/bies.200800226

    CAS  Article  PubMed  Google Scholar 

  18. Engwerda AHJ, Southworth J, Lebedeva MA, Scanes RJH, Kukura P, Fletcher SP (2015) Coupled metabolic cycles allow out-of-equilibrium autopoietic vesicle replication. Angew Chem Int Ed 59:15450–15455. https://doi.org/10.1002/anie.202007302

    CAS  Article  Google Scholar 

  19. Fiore M, Madanamoothoo W, Berlioz-Barbier A, Maniti O, Girard-Egrot A, Buchet R, Strazewski P (2017) Giant vesicles from rehydrated crude mixtures containing unexpected mixtures of amphiphiles formed under plausibly prebiotic conditions. Org Biomol Chem 15:4231–4240. https://doi.org/10.1039/C7OB00708F

    CAS  Article  PubMed  Google Scholar 

  20. Frank SA (2009) The common patterns of nature. J Evol Biol 22:1563–1585. https://doi.org/10.1111/j.1420-9101.2009.01775.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Frenkel-Pinter M, Samanta M, Ashkenasy G, Leman LJ (2020) Prebiotic peptides: Molecular hubs in the origin of life. Chem Rev 120:4707–4765. https://doi.org/10.1021/acs.chemrev.9b00664

    CAS  Article  PubMed  Google Scholar 

  22. Islam S, Powner MW (2017) Prebiotic systems chemistry: Complexity overcoming clutter. Chem 2:470–501. https://doi.org/10.1016/j.chempr.2017.03.001

    CAS  Article  Google Scholar 

  23. Joshi MP, Sawant AA, Rajamani S (2021) Spontaneous emergence of membrane-forming protoamphiphiles from a lipid-amino acid mixture under wet-dry cycles. Chem Sci 12:2970–2978. https://doi.org/10.1039/D0SC05650B

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Keil L, Hartmann M, Lanzmich S, Braun D (2008) Probing of molecular replication and accumulation in shallow heat gradients through numerical simulations. Phys Chem Chem Phys 18:20153–20159. https://doi.org/10.1039/c6cp00577b

    CAS  Article  Google Scholar 

  25. Kitadai N, Maruyama S (2018) Origins of building blocks of life: A review. Geosci Front 9:1117–1153. https://doi.org/10.1016/j.gsf.2017.07.007

    CAS  Article  Google Scholar 

  26. Krakauer DC, Sasaki A (2002) Noisy clues to the origin of life. Proc R Soc Lond B 269:2423–2428. https://doi.org/10.1098/rspb.2002.2127

    Article  Google Scholar 

  27. Lahav N, White D, Chang S (1978) Peptide formation in the prebiotic era: thermal condensation of glycine in fluctuating clay environments. Science 201:67–69. https://doi.org/10.1126/science.663639

    CAS  Article  PubMed  Google Scholar 

  28. Lopez A, Fiore M (1988) Investigating prebiotic protocells for a comprehensive understanding of the origins of life: A prebiotic systems chemistry perspective. Life 9:49. https://doi.org/10.3390/life9020049

    CAS  Article  Google Scholar 

  29. Morrow SM, Colomer I, Fletcher SP (2019) A chemically fuelled self-replicator. Nat Commun 10:1011. https://doi.org/10.1038/s41467-019-08885-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Osipovitch DC, Barratt C, Schwartz PM (2009) Systems chemistry and Parrondo’s paradox: computational models of thermal cycling. New J Chem 33:2022–2027. https://doi.org/10.1039/b900288j

    CAS  Article  Google Scholar 

  31. Pascal R, Chen IA (2019) From soup to peptides. Nat Chem 11:763–764. https://doi.org/10.1038/s41557-019-0318-6j

    CAS  Article  PubMed  Google Scholar 

  32. Patel BH, Percivalle C, Ritson DJ, Duffy CD, Sutherland JD (2015) Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. Nat Chem 7:301–307. https://doi.org/10.1038/NCHEM.2202

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Petrov AS, Gulen B, Norris AM, Kovacs NA, Bernier CR, Lanier KA, Fox GE, Harvey SC, Wartell RM, Hud NV, Williams LD (2015) History of the ribosome and the origin of translation. PNAS 112:15396–15401. https://doi.org/10.1073/pnas.1509761112

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Powner MW, Sutherland JD (2011) Prebiotic chemistry: a new modus operandi. Phil Trans R Soc B 366:2870–2877. https://doi.org/10.1098/rstb.2011.0134

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Saladino R, Sponer JE, Sponer J, Di Mauro E (2018) Rewarming the primordial soup: Revisitations and rediscoveries in prebiotic chemistry. Chembiochem 19:22–25. https://doi.org/10.1002/cbic.201700534

    CAS  Article  PubMed  Google Scholar 

  36. Segré D, Ben-Eli D, Deamer DW, Lancet D (2001) The lipid world. Orig Life Evol Biosph 31:119–145. https://doi.org/10.1023/A:1006746807104

    Article  PubMed  Google Scholar 

  37. Serov NY, Shtyrlin VG, Khayarov KR (2020) The kinetics and mechanisms of reactions in the flow systems glycine-sodium trimetaphosphate: imidazoles: the crucial role of imidazoles in prebiotic peptide syntheses. Amino Acids 52:811–821. https://doi.org/10.1007/s00726-020-02854-z

    CAS  Article  PubMed  Google Scholar 

  38. Simakov DSA, Peŕez-Mercader J (2013) Noise induced oscillations and coherence resonance in a generic model of the nonisothermal chemical oscillator. Sci Rep 3:2404. https://doi.org/10.1038/srep02404

    Article  PubMed  PubMed Central  Google Scholar 

  39. Spitzer J (2013) Emergence of life from multicomponent mixtures of chemicals: The case for experiments with cycling physicochemical gradients. Astrobiology 13:404–413. https://doi.org/10.1089/ast.2012.0924

    CAS  Article  PubMed  Google Scholar 

  40. Sproul G (2015) Abiogenic syntheses of lipoamino acids and lipopeptides and their prebiotic significance. Orig Life Evol Biosph 45:427–437. https://doi.org/10.1007/s11084-015-9451-44

    CAS  Article  PubMed  Google Scholar 

  41. Szostak JW (2011) An optimal degree of physical and chemical heterogeneity for the origin of life? Phil Trans R Soc B 366:2894–2901. https://doi.org/10.1098/rstb.2011.0140

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Varfolomeev SD, Lushchekina SV (2014) Prebiotic synthesis and selection of macromolecules: Thermal cycling as a condition for synthesis and combinatorial selection. Geochem Int 52:1197–1206. https://doi.org/10.1134/S0016702914130102

    CAS  Article  Google Scholar 

  43. Vasas V, Fernando C, Santos M, Kauffman S, Szathmary E (2012) Evolution before genes. Biol Direct 7:1. https://doi.org/10.1186/1745-6150-7-1

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wang GT, Tang BH, Liu Y, Gao QY, Wang ZQ (2016) The fabrication of a supra-amphiphile for dissipative self-assembly. Chem Sci 7:1151–1155. https://doi.org/10.1039/c5sc03907

    CAS  Article  PubMed  Google Scholar 

Download references

Funding

This research was partially funded by Australian Research Council Future Fellowship FT0991007 (R.B.).

Author information

Affiliations

Authors

Contributions

Both authors contributed to the study conception and design. Coding, computations and data collection and processing were carried out by Rowena Ball. Both authors drafted, revised and approved the final manuscript.

Corresponding author

Correspondence to Rowena Ball.

Ethics declarations

Ethics Approval

Not applicable.

Conflicts of Interest/Competing Interests/Financial Interests

The authors have none to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ball, R., Brindley, J. Does Stochasticity Favour Complexity in a Prebiotic Peptide-Micelle System?. Orig Life Evol Biosph (2021). https://doi.org/10.1007/s11084-021-09614-3

Download citation

Keywords

  • Fluctuations
  • Stochasticity
  • Prebiotic complexity
  • Peptide-micelles
  • Thermochemical oscillator
  • Arrhenius rates