Possible Ancestral Functions of the Genetic and RNA Operational Precodes and the Origin of the Genetic System

Abstract

The origin of genetic systems is the central problem in the study of the origin of life for which various explanatory hypotheses have been presented. One model suggests that both ancestral transfer ribonucleic acid (tRNA) molecules and primitive ribosomes were originally involved in RNA replication (Campbell 1991). According to this model the early tRNA molecules catalyzed their own self-loading with a trinucleotide complementary to their anticodon triplet, while the primordial ribosome (protoribosome) catalyzed the transfer of these terminal trinucleotides from one tRNA to another tRNA harboring the growing RNA polymer at the 3´-end.

Here we present the notion that the anticodon-codon-like pairs presumably located in the acceptor stem of primordial tRNAs (Rodin et al. 1996) (thus being and remaining, after the code and translation origins, the major contributor to the RNA operational code (Schimmel et al. 1993)) might have originally been used for RNA replication rather than translation; these anticodon and acceptor stem triplets would have been involved in accurately loading the 3’-end of tRNAs with a trinucleotide complementary to their anticodon triplet, thus allowing the accurate repair of tRNAs for their use by the protoribosome during RNA replication.

We propose that tRNAs could have catalyzed their own trinucleotide self-loading by forming catalytic tRNA dimers which would have had polymerase activity. Therefore, the loading mechanism and its evolution may have been a basic step in the emergence of new genetic mechanisms such as genetic translation. The evolutionary implications of this proposed loading mechanism are also discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Ban N, Nissen P, Hasen J, Moore PB, Steiz TA (2000) The complete atomic structure of the large ribosomal subunit at 2,4A resolution. Science 289:905–920

    CAS  PubMed  Article  Google Scholar 

  2. Becker S, Thoma I, Deutsch A, Gehrke T, Mayer P, Zipse H, Carell T (2016) A high-yielding, strictly regioselective prebiotic purine nucleoside formation pathway. Science 352:833–836

    CAS  PubMed  Article  Google Scholar 

  3. Becker S, Feldmann J, Wiedemann S, Okamura H, Schneider C, Iwam K et al (2019) Unified prebiotically plausible synthesis of pyrimidine and purine RNA ribonucleotides. Science 366:76–82

    CAS  PubMed  Article  Google Scholar 

  4. Bessho Y, Hodgson DR, Suga H (2002) A tRNA aminoacylation system for non –natural amino acids based on a programmable ribozyme. Nat Biotechnol 20:723–728

    CAS  PubMed  Article  Google Scholar 

  5. Bloch DP, Mcarthur B, Mirrop, (1985) tRNA – rRNA sequence homologies: evidence from an ancient modular format by tRNAs and rRNAs. Biosystem 17:209–225

    CAS  Article  Google Scholar 

  6. Brooks DJ, Fresco JR (2003) Greater GNN pattern bias in sequence elements encoding conserved residues of ancient proteins may be an indicator of amino acid composition of early proteins. Gene 303:177–185

    CAS  PubMed  Article  Google Scholar 

  7. Brosius J (2001) tRNAs in the spotlight during protein biosynthesis. Trends Biochem Sci 26:653–656

    CAS  PubMed  Article  Google Scholar 

  8. Brown RS, Hingerty BE, Dewan JC, Klug A (1983) Pb(II) catalysed cleavage of the sugar-phosphate backbone of yeast tRNA Phe implications for lead toxicity and self-splicing RNA. Nature 303:543–546

    CAS  PubMed  Article  Google Scholar 

  9. Burton AS, Stern JC, Elsila JE, Galvin DP, Dworkin JP (2012) Understanding prebiotic chemistry through the analysis of extraterrestrial amino acids and nucleobases in meteorites. Chem Soc Rev 41:5459–5472

    CAS  PubMed  Article  Google Scholar 

  10. Campbell JH (1991) An RNA replisome as the ancestor of the ribosome. J Mol Evol 32:3–5

    CAS  PubMed  Article  Google Scholar 

  11. Cech TR, Zaug AJ, Grabowski PJ (1981) In vitro splicing of the ribosomal RNA precursor of Tetrahymena; involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell 27:487–496

    CAS  PubMed  Article  Google Scholar 

  12. Cermakain N, Cedergren R (1998) Modified nucleosides always were: an evolutionary model. From “Modification and editing of RNA” Grosjean H, Benne R, Eds. (ASM Press, Washington DC), Chap. 29

  13. Chatterjee S, Yadav S (2019) The origin of prebiotic information system in the peptide/RNA world: a simulation model of the evolution of translation and the genetic code. Life 9:25

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  14. Chumachenko NV, Novikok Y, Yarus M (2009) Rapid and simple ribozymic aminoacylation using 3 conserved nucleotides. J Am Chem Soc 131:5257–5263

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. Crick FHC (1968) The origin of the genetic code. J Mol Biol 38:367–379

    CAS  PubMed  Article  Google Scholar 

  16. Di Giulio M (1992) On the origin of the tRNA molecule. J Theor Biol 159:199–214

    PubMed  Article  Google Scholar 

  17. Di Giulio M (1994) On the origin of protein synthesis: a speculative model based on hairpin RNA sequences. J Theor Biol 171:303–308

    PubMed  Article  Google Scholar 

  18. Di Giulio M (1998) Reflections on the origin of the genetic code: a hypothesis. J Theor Biol 191:191–196

    PubMed  Article  Google Scholar 

  19. Di Giulio M (2004) The origin of the tRNA molecule: implications for the origin of protein synthesis. J Theor Biol 226:89–93

    PubMed  Article  CAS  Google Scholar 

  20. Di Giulio M (2008) An extension of the coevolution theory of the origin of the genetic code. Biol Direct 3:37

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  21. Di Giulio M, Medugno M (1999) Physicochemical optimization in the genetic code origin as the number of codified amino acids increases. J Mol Evol 49:1–10

    PubMed  Article  PubMed Central  Google Scholar 

  22. Dillon LS (1973) The origins of the genetic code. Botanical Rev 39:301–345

    CAS  Article  Google Scholar 

  23. Eigen M, Gardiner W, Schuster P, Winkler-Oswatitsch, (1981) The origin of the genetic information. Sci Am 244:88–92

    CAS  PubMed  Article  Google Scholar 

  24. Eisinger J, Gross N (1974) The anticodon-anticodon complex. J Mol Biol 88:165–175

    CAS  PubMed  Article  Google Scholar 

  25. Ekland EH, Bartel DP (1996) RNA-catalysed RNA polymerization using nucleoside triphosphates. Nature 382:373–376

    CAS  PubMed  Article  Google Scholar 

  26. Ellington AD, Khrapov M, Shaw CA (2000) The scene of a frozen accident. RNA 6:485–498

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. Fahnestock S, Rich A (1971) Ribosome-Catalyzed Polyester Formation Science 173:340–343

    CAS  PubMed  Google Scholar 

  28. Gibson TJ, Lamond AI (1990) Metabolic complexity in the RNA world and implications for the origin of protein synthesis. J Mol Evol 31:7–15

    Article  Google Scholar 

  29. Gilbert W (1986) The RNA world. Nature 319:818

    Article  Google Scholar 

  30. Gordon KHL (1995) Were RNA replication and translation directly coupled in RNA (protein?) world? J Theor Biol 173:179–193

    CAS  PubMed  Article  Google Scholar 

  31. Grosjean H, de Crécy-Lagard V, Björk GR (2004) Aminoacylation of the anticodon stem by a tRNA-synthetase paralog: relic of an ancient code? Trends Biochem. Sci 29:519–522

    CAS  Google Scholar 

  32. Grosjean H, Houssier C, Romby P, Marquet R (1998) Modulatory role of modified nucleotides in RNA loop-loop interactions, In Modification and Editing of RNA (Grosjean H, Benne R, eds) pp. 113–133. ASM Press

  33. Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35:849–857

    CAS  PubMed  Article  Google Scholar 

  34. Hartman H (1995) Speculations on the origin of the genetic code. J Mol Evol 40:541–544

    CAS  PubMed  Article  Google Scholar 

  35. Hayden EJ, Lehman N (2006) Selfassembly of a group I intron from inactive oligonucleotide fragments. Chem Biol 13:909–918

    CAS  PubMed  Article  Google Scholar 

  36. Higgs PG (2009) A four-column theory for the origin of the genetic code: tracing the evolutionary pathways that gave rise to an optimized code. Biol Direct 4:16

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  37. Higgs PG, Pudritz RE (2009) A thermodynamic basis for prebiotic amino acid synthesis and the nature of the first genetic code. Astrobiology 9:483–490

    CAS  PubMed  Article  Google Scholar 

  38. Illangasekare M, Yarus M (1999) Specific, rapid synthesis of Phe-tRNA by RNA. Proc Natl Acad Sci USA 96:5470–5475

    CAS  PubMed  Article  Google Scholar 

  39. Jovine L, Djordjevic S, Rhodes D (2000) The crystal structure of yeast phenylalanine tRNA at 2.0 A resolution: cleavage by Mg 2+ in 15-year old crystals. J Mol Biol 301:401–414

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. Joyce GF (2004) Directed evolution of nucleic acids enzymes. Annu Rev Biochem 73:791–836

    CAS  PubMed  Article  Google Scholar 

  41. Kazakov S, Altman S (1992) A trinucleotide can promote metal ion-dependent cleavage of RNA. Proc Natl Acad Sci USA 89:7939–7943

    CAS  PubMed  Article  Google Scholar 

  42. Knight RD, Landweber LF (2000) Guilt by association: the arginine case revisited. RNA 6:499–510

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. Koonin EV, Novozhilov AS (2017) Origin and evolution of the universal genetic code. Ann Rev Genetc 51:45–62

    CAS  Article  Google Scholar 

  44. Landweber LF, Pokrovskaya ID (1999) Emergence of a dual-catalytic RNA with metal-specific cleavage and ligase activities: the spandrels of RNA evolution. Proc Natl Acad Sci USA 89:173–178

    Article  Google Scholar 

  45. Lincoln TA, Joyce GF (2009) Self-sustained replication of and RNA ribozyme. Science 323:1229–1232

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Manrubia SC, Briones C (2007) Modular evolution and increase of functional complexity in replicating RNA molecules. RNA 13:97–107

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Maizels, N Weiner AM (2000) The genomic tag hypothesis; what molecular fossils tell us about the evolution of tRNA. In RNA world (ed. RF. Gesteland, TR. Cech and J.F. Atkins) pp. 79–111. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

  48. Martínez Giménez JA, Tabares-Seisdedos R (2002) On the dimerization of the primitive tRNAs: Implications in the origin of genetic code. J Theor Biol 217:493–498

    PubMed  Article  CAS  Google Scholar 

  49. Minajigi A, Francklyn CS (2008) RNA-assisted catálisis in a protein enzyme: the 2’-hydroxyl of tRNA – Thr A76 promotes aminoacylation by threonyl-tRNA synthetase. Proc Natl Acad Sci USA 105:17748–17753

    CAS  PubMed  Article  Google Scholar 

  50. Moller W, Jamsen GMC (1990) Transfer RNAs for primordial amino acids contain remnants of a primitive code at position 3 to 5. Biochimie 72:361–368

    CAS  PubMed  Article  Google Scholar 

  51. Negroni M, Buc H (2001) Mechanisms of Retroviral Recombination Annrev Genet 35:275–302

    CAS  Google Scholar 

  52. Noller HF (2011) Evolution of protein synthesis from an RNA world. In: RNA worlds: from life’s origins to diversity in gene regulation. (Akkins JF., Gesteland, RF. and Cech TR.), pp. 141–154. Cold Spring Harbor, New York. Cold Spring Harbor Laboratory Press

  53. Orgel LE (1968) Evolution of the genetic apparatus. J Mol Biol 38:381–393

    CAS  PubMed  Article  Google Scholar 

  54. Orgel LE (1986) RNA catalysis and the origins of life. J Theor Biol 123:127–149

    CAS  PubMed  Article  Google Scholar 

  55. Orgel LE (1989) The origin of polynucleotide-directed protein synthesis. J Mol Evol 29:465–474

    CAS  PubMed  Article  Google Scholar 

  56. Pan T, Long DM, Uhlenbeck OC (1993) Divalent metal ions in RNA floding and catalysis. In: The RNA World (Gesteland R & Atkins J eds), pp. 271–302 Cold Spring Habort, New York; Cold Spring Habor Laboratory Press

  57. Poole AM, Jeffares DC, Penny D (1998) The path from the RNA world. J Mol Evol 46:1–17

    CAS  PubMed  Article  Google Scholar 

  58. Powner MW, Gerland B, Sutherland JD (2009) Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459:239–242

    CAS  PubMed  Article  Google Scholar 

  59. Robertson MP, Miller SL (1995) Prebiotic synthesis of 5-substituted uracils: a bridge between the RNA world and the DNA-protein world. Science 268:702–705

    CAS  PubMed  Article  Google Scholar 

  60. Rodin SN, Ohno S (1997) Four primordial modes of tRNA - synthetase recognition, determined by the (G, C) operational code. Proc Natl Acad Sci USA 94:5183–5188

    CAS  PubMed  Article  Google Scholar 

  61. Rodin S, Rodin A, Ohno S (1996) The presence of codon-anticodon pairs in the acceptor stem of tRNAs. Proc Natl Acad Sci USA 93:4537–4542

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  62. Rodin AS, Szathmary E, Rodin SN (2009) One ancestor for two codes viewed from the perspective of two complementary modes of tRNA aminoacylation. Biol Direct 4:4

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  63. Saad NY, Stamatopoulou V, Brayé M, Draina D, Stathopoulos C, Becker HD (2015) Two-codon T-box riboswitch binding two tRNAs. Proc Natl Acad Sci USA 110:12756–12761

    Article  Google Scholar 

  64. Saito H, Watanabe K, Suga H (2001) Concurrent molecular recognition of the amino acid and tRNA by a ribozyme. RNA 7:1867–1878

  65. Salazar JC, Ambrogelly A, Crain PF, McCloskey JA, Söll D (2004) A truncated aminoacyl-tRNA synthetase modifies RNA. Proc Natl Acad Sci USA 101:7536–7541

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  66. Schmidt FJ (1999) Ribozymes; why so many, why so few? Mol Cells 9:459–463

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Schimmel P, Giege R, Moras D, Yokoyama S (1993) An operational RNA code for amino acids and possible relationship to genetic code. Proc Natl Acad Sci USA 90:8763–8768

    CAS  PubMed  Article  Google Scholar 

  68. Schimmel P, Henderson B (1994) Possible role of aminoacyl-RNA complexes in noncoded peptide synthesis and the origin of coded synthesis. Proc Natl Acad Sci USA 91:11282–11286

    Article  Google Scholar 

  69. Sharp PA (1985) On the origin of RNA splicing and introns. Cell 42:397–400

    CAS  PubMed  Article  Google Scholar 

  70. Shimizu M (1982) Molecular basis for the genetic code. J Mol Evol 18:297–303

    CAS  PubMed  Article  Google Scholar 

  71. Shimizu M (1995) Specific aminoacylation of C4N hairpin RNAs with cognate aminoacyl-adenylates in the presence of a dipeptide: origin of the genetic code. J Biochem 117:23–26

    CAS  PubMed  Article  Google Scholar 

  72. Stahley MR, Strobel SA (2005) Structural evidence for a two-metal-ion mechanism of group I intron splicing. Science 309:1587–1590

    CAS  PubMed  Article  Google Scholar 

  73. Strobel SA, Cochrane JC (2007) RNA catalysis; ribozymes, ribosomes, and riboswitches. Curr Opin Chem Biol 11:636–643

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. Strobel SA, Doudna JA (1997) RNA seeing double: close-packing of helices in RNA tertiary structure. Trends Biochem Sci 22:262–268

    CAS  PubMed  Article  Google Scholar 

  75. Szathmary E (1993) Coding coenzyme handles; a hypothesis for the origin of the genetic code. Proc Natl Acad Sci USA 90:9916–9920

    CAS  PubMed  Article  Google Scholar 

  76. Szathmary E (1999) The origin of the genetic code; amino acids as cofactors in an RNA world. Trend Genet 15:223–229

    CAS  Article  Google Scholar 

  77. Szostack JW (2009) Systems chemistry on early Earth. Nature 459:171–172

    Article  CAS  Google Scholar 

  78. Trifonov EN (2000) Consensus temporal order of amino acids and evolution of the triplet code. Gene 261:139–151

    CAS  PubMed  Article  Google Scholar 

  79. Turk RM, Chumachenko NV, Yarus M (2010) Multiple translational products from a five-nucleotide ribozyme. Proc Natl Acad SciUSA 107:4585–4589

    CAS  Article  Google Scholar 

  80. Vicens Q, Cech TR (2009) A natural ribozyme with 3’.5¨ RNA ligase activity. Nature Chem Biol 5:97–99

    CAS  Article  Google Scholar 

  81. Weiner AM, Maizels N (1987) tRNA –like structures tag the 3’ends of genomic RNA molecules for replication; implications for the origin of translation. Proc Natl Acad Sci USA 84:7383–7387

    CAS  PubMed  Article  Google Scholar 

  82. Weinger S, Strobel SA (2006) Participation of tRNA A76 hydroxyl groups throughout translation. Biochemistry 45:5939–5948

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. Wilusz JE, Whipple JM, Phizicky EM, Sharp PA (2011) tRNAs marked with CCACCA are targeted for degradation. Science 334:817–821

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. Wilson CW, Szostak JW (1995) In vitro evolution of a self-alkylating ribozyme. Nature 374:777–782

    CAS  PubMed  Article  Google Scholar 

  85. Woese CR (1965) On the evolution of the genetic code. Proc Natl Acad Sci USA 54:1546–1552

    CAS  PubMed  Article  Google Scholar 

  86. Woese CR (1980) Just so stories and Rube Goldberg machines: speculations on the origin of the protein synthetic machinery. In Ribosomes: Structure, Function and Genetics (Chambliss, G. et al., eds) , pp 357–373, University Park Press

  87. Wolf Y, Koonin EV (2007) On the origin of the translation system and the genetic code in the RNA world by means of natural selection, exaptation and subfunctionalization. Biol Direct 2:14

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  88. Yan SK, Soll D, Crothers DM (1972) Properties of a dimer of tRNATyr (Escherichia Coli). Biochemistry 11:2311–2320

    Article  Google Scholar 

  89. Yarus M (1998) Amino acids as RNA ligands: a direct-RNA -template theory for the code’s origin. J Mol Evol 47:109–117

    CAS  PubMed  Article  Google Scholar 

  90. Yarus M, Caporaso JG, Knight R (2005) Origins of the genetic code; the escaped triplet theory. Annu Rev Biochem 74:179–198

    CAS  PubMed  Article  Google Scholar 

  91. Zaia DA, Zaia CT, De Santana H (2008) Which amino acids should be used in the prebiotic chemistry studies? Orig Life Evol Biosph 38:469–488

    CAS  PubMed  Article  Google Scholar 

  92. Zhan J, Ferré- D’Amaré AR (2013) Co-crystal structure of a T-box riboswitch stem I domain in complex with its cognate tRNA. Nature 500:363–366

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dedicated to my parents, Antonio y Maria Dolores (JAMG). We thank a referee for comments on manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rafael Tabares-Seisdedos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Martínez-Giménez, J.A., Tabares-Seisdedos, R. Possible Ancestral Functions of the Genetic and RNA Operational Precodes and the Origin of the Genetic System. Orig Life Evol Biosph (2021). https://doi.org/10.1007/s11084-021-09610-7

Download citation

Keywords

  • RNA replication
  • Codon-anticodon interaction
  • RNA world
  • Origin of genetic translation
  • Genetic code
  • RNA operational code
  • Ribozyme