Histidine Self-assembly and Stability on Mineral Surfaces as a Model of Prebiotic Chemical Evolution: An Experimental and Computational Approach

Abstract

The abiotic synthesis of histidine under experimental prebiotic conditions has proven to be chemically promising and plausible. Within this context, the present results suggest that histidine amino acid may function as a simple prebiotic catalyst able to enhance amino acid polymerization. This work describes an experimental and computational approach to the self-assembly and stabilization of DL-histidine on mineral surfaces using antigorite ((Mg, Fe)3Si2O5(OH)4), pyrite (FeS2), and aragonite (CaCO3) as representative minerals of prebiotic scenarios, such as meteorites, and subaerial and submarine hydrothermal systems. Experimental results were obtained through polarized-light microscopy, IR spectroscopy (ATR-FTIR), and differential scanning calorimetry (DSC). Molecular dynamics was performed through computational simulations with the MM + method in HyperChem software. IR spectra suggest the presence of peptide bonds in the antigorite-histidine and aragonite-histidine assemblages with the presence of amide I and amide II vibration bands. The FTIR second derivative inspection supports this observation. Moreover, DSC data shows histidine stabilization in the presence of antigorite and aragonite by changes in histidine thermodynamic properties, particularly an increase in histidine decomposition temperature (272ºC in antigorite and 275ºC in aragonite). Results from molecular dynamics are consistent with DSC data, suggesting an antigorite-histidine closer interaction with decreased molecular distances (cca. 5.5 Å) between the amino acid and the crystal surface. On the whole, the experimental and computational outcomes support the role of mineral surfaces in prebiotic chemical evolution as enhancers of organic stability.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Alifano P, Fani R, Liò P, Lazcano A, Bazzicalupo M, Carlomagno MS, Bruni CB (1996) Histidine Biosynthetic Pathway and Genes: Structure, Regulation, and Evolution. Microbiol Rev 60(1):44–69

    CAS  Article  Google Scholar 

  2. Angeles-Camacho E, Cruz-Castañeda J, Meléndez A, Colín-García M, de la Cruz KC, Ramos-Bernal S, Negrón-Mendoza A, Garza-Ramos G, Rodríguez-Zamora P, Camargo-Raya C, Heredia A (2020) Potential Prebiotic Relevance of Glycine Single Crystals Enclosing Fluid Inclusions: An Experimental and Computer Simulation with Static Magnetic Fields. Advances in Biological Chemistry 10(5):140–156

    CAS  Article  Google Scholar 

  3. Basiuk VA, Navarro-González R (1996) Possible role of volcanic ash-gas clouds in the Earth’s prebiotic chemistry. Origins Life Evol Biosphere 26:173–194. https://doi.org/10.1007/BF0180985

    CAS  Article  Google Scholar 

  4. Barraza-Garza G, de la Rosa LA, Martínez-Martínez A, Castillo-Michel H, Cotte M, Alvarez-Parrilla E (2013) La microscopía de infrarrojo con transformada de Fourier (FTIRM) en el estudio de sistemas biológicos. Revista latinoamericana de química 41(3):125–137

    CAS  Google Scholar 

  5. Barth A (2007) Infrared spectroscopy of proteins. Biochimica et Biophysica Acta - Bioenergetics 1767(9):1073–1101. https://doi.org/10.1016/j.bbabio.2007.06.004

    CAS  Article  Google Scholar 

  6. Bender D (2012) Amino acid metabolism. 3th ed. John Wiley & Sons

  7. Chakrabarty D, Mahapatra S (1999) Aragonite crystals with unconventional morphologies. J Mater Chem 9(11):2953–2957. https://doi.org/10.1039/a905407c

    CAS  Article  Google Scholar 

  8. Chavagnac V, Ceuleneer G, Monnin C, Lansac B, Hoareau G, Boulart C (2013) Mineralogical assemblages forming at hyperalkaline warm springs hosted on ultramafic rocks: A case study of Oman and Ligurian ophiolites. Geochem Geophys Geosyst 14(7):2474–2495. https://doi.org/10.1002/ggge.20146

    CAS  Article  Google Scholar 

  9. Crespo M, Pereira D, García M, Gallardo J and Escribano V (2019) Characterization of Serpentines from Different Regions by Transmission Electron Microscopy, X-ray Diffraction, BET Specific Surface Area and Vibrational and Electronic Spectroscopy. Fibers 7(47). https://doi.org/10.3390/fib7050047

  10. Damer B, Deamer D (2020) The hot spring hypothesis for an origin of life. Astrobiology 20(4):429–452. https://doi.org/10.1089/ast.2019.2045

    Article  PubMed  PubMed Central  Google Scholar 

  11. Deamer D, Damer B (2017) Can Life Begin on Enceladus? A Perspective from Hydrothermal Chemistry Astrobiology 17(9):834–839. https://doi.org/10.1089/ast.2016.1610

    CAS  Article  PubMed  Google Scholar 

  12. Faust GT (1950) Thermal analysis studies on carbonates; I. Aragonite and calcite American Mineralogist 35:207–224

    CAS  Google Scholar 

  13. Foggia M, Taddei P, Torreggiani A, Dettin M, Tinti A (2012) Self-assembling peptides for biomedical applications: IR and Raman spectroscopies for the study of secondary structure. Proteomics Research Journal 2(3):231–272

    Google Scholar 

  14. Frenkel-Pinter M, Haynes JW, Martin C, Petrov AS, Burcar BT, Krishnamurthy R, Hud NV, Leman LJ, Williams LD (2019) Selective incorporation of proteinaceous over nonproteinaceous cationic amino acids in model prebiotic oligomerization reactions. Proceedings of the National Academy of Sciences 116(33) 16338–16346. https://doi.org/10.1073/pnas.1904849116

  15. Ghosh A, Tucker M, Gai F (2014) 2D IR Spectroscopy of Histidine: Probing Side-Chain Structure and Dynamics via Backbone Amide Vibrations. The Journal of Physical Chemistry 118(29). https://doi.org/10.1021/jp411901m

  16. Giampouras M, Garrido CJ, Zwicker J, Vadillo I, Smrzka D, Bach W, Peckmann J, Jiménez P, Benavente J, García-Ruiz JM (2019) Geochemistry and mineralogy of serpentinization-driven hyperalkaline springs in the Ronda peridotites. Lithos 105215:350–351. https://doi.org/10.1016/j.lithos.2019.105215

    CAS  Article  Google Scholar 

  17. González J, Rodríguez J, Tarazona JM, Luna D, Ríos C, García C, Castellanos O, Bonilla J, Pinto JL, Henao JA, Mendoza C, Mejía E, Cabanzo R, Molina D (2017) Caracterización Mineralógica, Química y Espectroscópica de la Serpentinita en la Cantera de Explotación de Córdoba (Quindío). Geología Norandina 2:19–39

    Google Scholar 

  18. Hashizume H (2012) Role of Clay Minerals in Chemical Evolution and the Origins of Life, in Clay Minerals in Nature - Their Characterization. Modification and Application 191–208. https://doi.org/10.5772/50172

  19. Hazen RM (2006) Mineral surfaces and the prebiotic selection and organization of biomolecules. Am Miner 91:1715–1729. https://doi.org/10.2138/am.2006.2289

    CAS  Article  Google Scholar 

  20. Hazen RM, Filley TR, Goodfriend GA (2001) Selective adsorption of L- and D-amino acids on calcite: Implications for biochemical homochirality. Proc Natl Acad Sci USA 98(10):5487–5490. https://doi.org/10.1073/pnas.101085998

    CAS  Article  PubMed  Google Scholar 

  21. Hazen RM, Sverjensky DA (2010) Mineral surfaces, geochemical complexities, and the origins of life. Cold Spring Harb Perspect Biol 2(5):a002162. https://doi.org/10.1101/cshperspect.a002162

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Kitadai N, Maruyama S (2018) Origins of building blocks of life: A review. Geosci Front 9(4):1117–1153. https://doi.org/10.1016/j.gsf.2017.07.007

    CAS  Article  Google Scholar 

  23. Koga T, Naraoka H (2017) A new family of extraterrestrial amino acids in the Murchison meteorite. Scientific Reports 7(1):1–8. https://doi.org/10.1038/s41598-017-00693-9

    CAS  Article  Google Scholar 

  24. Kun Á, Radványi Á (2018) The evolution of the genetic code: Impasses and challenges. BioSystems 164:217–225. https://doi.org/10.1016/j.biosystems.2017.10.006

    CAS  Article  PubMed  Google Scholar 

  25. Labus M (2017) Thermal methods implementation in analysis of fine-grained rocks containing organic matter. J Therm Anal Calorim 129:965–973. https://doi.org/10.1007/s10973-017-6259-7

    CAS  Article  Google Scholar 

  26. Ludwig KA, Kelley DS, Butterfield DA, Nelson BK, Früh-Green G (2006) Formation and evolution of carbonate chimneys at the Lost City Hydrothermal Field. Geochim Cosmochim Acta 20(4):90–99. https://doi.org/10.1016/j.gca.2006.04.016

    CAS  Article  Google Scholar 

  27. Martin W, Baross J, Kelley D, Russell MJ (2008) Hydrothermal vents and the origin of life. Nat Rev Microbiol 6(11):805–814. https://doi.org/10.1038/nrmicro1991

    CAS  Article  PubMed  Google Scholar 

  28. Maurel MC, Leclerc F (2016) From foundation stones to life: Concepts and results. Elements 12(6):407–412. https://doi.org/10.2113/gselements.12.6.407

    CAS  Article  Google Scholar 

  29. McCaig AM, Früh-Green GL, Kelemen P, Teagle DAH (2020) Serpentinite in the earth system. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 378(2165):20190332. https://doi.org/10.1098/rsta.2019.0332

    CAS  Article  Google Scholar 

  30. Mendoza-Torres E, Cruz-Catañeda J, Negrón-Mendoza A, Heredia A (2020) Computer and Experimental Simulation of Alloxazine Synthesis from Gamma Irradiation of Amino Acids on Iceland Spar: A Prebiotic Chemistry Perspective. J Mol Evol 88(3):284–291

    CAS  Article  Google Scholar 

  31. Mesu JG, Visser T, Soulimani F, Weckhuysen BM (2005) Infrared and Raman spectroscopic study of pH-induced structural changes of L-histidine in aqueous environment. Vib Spectrosc 39(1):114–125

    CAS  Article  Google Scholar 

  32. Nelson DL, Cox MM, Lehninger AL (2017) Lehninger principles of biochemistry, 7th edn. Freeman, W.H

    Google Scholar 

  33. Oliveira EM, Oliveira CM, Bauer Sala MV, Montedo ORK, Peterson M (2018) Thermal behavior of pyrite in the CO2 and N2 atmosphere for obtaining pyrrhotite: A magnetic material. Materials Research 21(6):e20170244. https://doi.org/10.1590/1980-5373-MR-2017-0244

    Article  Google Scholar 

  34. Oró J, Basile B, Cortes S, Shen C, Yamrom T (1984) The prebiotic synthesis and catalytic role of imidazoles and other condensing agents. Orig Life 14(1–4):237–242. https://doi.org/10.1007/BF00933663

    Article  PubMed  Google Scholar 

  35. Ostrooumov M (2007) Espectrometría infrarroja de reflexión en Mineralogía Avanzada. Gemología y Arqueometría: Monografías del Instituto de Geofísica Universidad Nacional Autónoma de México 12(1):7–16

    Google Scholar 

  36. Poulton SW, Canfield DE (2011) Ferruginous conditions: a dominant feature of the ocean through Earth’s history. Elements 7(2):107–112

    CAS  Article  Google Scholar 

  37. Renaut R, Jones B (2011) Hydrothermal Environments, Terrestrial. Encyclopedia of Geobiology 467–479. https://doi.org/10.1007/978-1-4020-9212-1_114

  38. Rickard D, Luther GW (2007) Chemistry of iron sulfides. Chem Rev 107(2):514–562

    CAS  Article  Google Scholar 

  39. Rimola A, Sodupe M, Ugliengo P (2019) Role of mineral surfaces in prebiotic chemical evolution. silico quantum mechanical studies Life 9(1):10. https://doi.org/10.3390/life9010010

    CAS  Article  Google Scholar 

  40. Rubin AE, Ma C (2017) Meteoritic minerals and their origins. Chem Erde 77(3):325–385. https://doi.org/10.1016/j.chemer.2017.01.005

    CAS  Article  Google Scholar 

  41. Russell MJ, Hall AJ, Martin W (2010) Serpentinization as a source of energy at the origin of life. Geobiology 8(5):355–371. https://doi.org/10.1111/j.1472-4669.2010.00249.x

    CAS  Article  PubMed  Google Scholar 

  42. Russell MJ, Ponce A (2020) Six ‘Must-Have ’ Minerals for Life ’ s Emergence : Fougerite and Mackinawite. Life 10(11):291. https://doi.org/10.3390/life10110291

    CAS  Article  PubMed Central  Google Scholar 

  43. Schrenk MO, Brazelton WJ, Lang SQ (2013) Serpentinization, carbon, and deep life. Rev Mineral Geochem 75(1):575–606. https://doi.org/10.2138/rmg.2013.75.18

    CAS  Article  Google Scholar 

  44. Shen C, Mills T, Oró J (1990a) Prebiotic synthesis of histidyl-histidine. J Mol Evol 31(3):175–179. https://doi.org/10.1007/BF02109493

    CAS  Article  PubMed  Google Scholar 

  45. Shen C, Yang L, Miller SL, Oró J (1987) Prebiotic synthesis of imidazole-4-acetaldehyde and histidine. Orig Life Evol Biosph 17(3–4):295–305. https://doi.org/10.1007/BF02386469

    CAS  Article  PubMed  Google Scholar 

  46. Shen C, Yang L, Miller SL, Oró J (1990b) Prebiotic synthesis of histidine. J Mol Evol 31(3):167–174. https://doi.org/10.1007/BF02109492

    CAS  Article  PubMed  Google Scholar 

  47. Singh BR (2000) Basic aspects of the technique and applications of infrared spectroscopy of peptides and proteins. ACS Symp Ser 750:2–37. https://doi.org/10.1021/bk-2000-0750.ch001

    CAS  Article  Google Scholar 

  48. Sojo V, Herschy B, Whicher A, Camprubí E, Lane N (2016) The Origin of Life in Alkaline Hydrothermal Vents. Astrobiology 16(2):181–197. https://doi.org/10.1089/ast.2015.1406

    CAS  Article  PubMed  Google Scholar 

  49. Stalport F, Coll P, Szopa C, Person A, Navarro-González R, Cabane M, Ausset P, Vaulay MJ (2007) Search for past life on Mars: Physical and chemical characterization of minerals of biotic and abiotic origin: 2. Aragonite Geophysical Research Letters 34:L24102. https://doi.org/10.1029/2007GL031184

    CAS  Article  Google Scholar 

  50. TA Instruments (2020) How to Interpret the Unexpected Transitions in DSC Results. AZoM. Available at: https://www.azom.com/article.aspx?ArticleID=12101

  51. Viruthagiri G, Praveen P, Mugundan S, Anbuvannan M (2013) Growth and Characterization of L-Histidine Doped Thiourea Single Crystals by Slow Evaporation Method. Indian Journal of Advances in Chemical Science 1(4):193–200

    Google Scholar 

  52. Wächtershäuser G (1990) Evolution of the first metabolic cycles. Proc Natl Acad Sci 87(1):200–204. https://doi.org/10.1073/pnas.87.1.200

    Article  PubMed  Google Scholar 

  53. Wächtershäuser G (2007) On the chemistry and evolution of the pioneer organism. Chem Biodivers 4(4):584–602. https://doi.org/10.1002/cbdv.200790052

    Article  PubMed  Google Scholar 

  54. Weiss IM, Muth C, Drumm R, Kirchner HOK (2018) Thermal decomposition of the amino acids glycine, cysteine, aspartic acid, asparagine, glutamic acid, glutamine, arginine and histidine. BMC Biophysics 11(1):2. https://doi.org/10.1186/s13628-018-0042-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Wieczorek RD, Dörr M, Chotera, A, Luisi, PL, Monnard, PA (2013) Formation of RNA Phosphodiester Bond by Histidine-Containing Dipeptides. 14(2), 217–23. https://doi.org/10.1002/cbic.201200643

Download references

Acknowledgements

We would like to thank Luciano Díaz González, Martín Cruz Villafañe, Luis Miguel Valdez Pérez, Juan Eduardo Murrieta León, Antonio Ramírez Fernández, Enrique Palacios Boneta for their technical assistance. Also, we thank Claudia Consuelo Camargo Raya, Paola Molina Sevilla, Benjamín Leal Acevedo, Francisco García Flores, José Rangel Gutiérrez and (AH) to PAPIIT Project IN210119 on their support to this work.

Funding

This study was funded by UNAM-DGAPA-PAPIIT-IN210119.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Heredia-Barbero.

Ethics declarations

Conflicts of Interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethics Approval

We declare that our research was performed without cells, persons, or animal models.

Consent to Participate

All authors contributed to the study conception and design of the present manuscript. all authors agreed with the content of this manuscript.

Consent for Publication

All authors gave explicit consent to submit and publish this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Madrigal-Trejo, D., Villanueva-Barragán, P., Zamudio-Ramírez, R. et al. Histidine Self-assembly and Stability on Mineral Surfaces as a Model of Prebiotic Chemical Evolution: An Experimental and Computational Approach. Orig Life Evol Biosph (2021). https://doi.org/10.1007/s11084-021-09606-3

Download citation

Keywords

  • Prebiotic synthesis
  • Organic catalyst
  • Peptide bond
  • Infrared spectroscopy
  • Differential scanning calorimetry
  • Molecular dynamics