Molecular Adsorption on Cold Gas-Phase Hydrogen-Bonded Clusters of Chiral Molecules

Abstract

Gas-phase molecular adsorption was investigated as a model for molecular cloud formation. Molecular adsorption on cold gas-phase hydrogen-bonded clusters containing protonated tryptophan (Trp) enantiomers and monosaccharides such as methyl-α-d-glucoside, d-ribose, and d-arabinose was detected using a tandem mass spectrometer equipped with an electrospray ionization source and cold ion trap. The adsorption sites on the surface of cold gas-phase hydrogen-bonded cluster ions were quantified using gas-phase N2 adsorption-mass spectrometry. The gas-phase N2 adsorption experiments indicated that the number of adsorption sites on the surface of the hydrogen-bonded heterochiral clusters containing l-Trp and d-monosaccharides exceeded the number of adsorption sites on the homochiral clusters containing d-Trp and d-monosaccharides. H2O molecules were preferentially adsorbed on the heterochiral clusters, and larger water clusters were formed in the gas phase. Physical and chemical properties of cold gas-phase hydrogen-bonded clusters containing biological molecules were useful for investigating enantiomer selectivity and chemical evolution in interstellar molecular clouds.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abplanalp MJ, Förestel M, Kaiser RI (2016) Exploiting single photon vacuum ultraviolet photoionization to unravel the synthesis of complex organic molecules in interstellar ices. Chem Phys Lett 644:79–98

    CAS  Article  Google Scholar 

  2. Bailey J, Chrysostomou A, Hough JH, Gledhill TM, McCall A, Clark S, Ménard F, Tamura M (1998) Circular polarization in star-formation regions: implications for biomolecular homochirality. Science 281:672–674

    Article  Google Scholar 

  3. Bernstein MP, Dworkin JP, Sandford SA, Cooper GW, Allamandola LJ (2002) Racemic amino acids from the ultraviolet photolysis of interstellar ice analogues. Nature 416:401–403

    CAS  Article  Google Scholar 

  4. Callis PR, Liu T (2004) Quantitative prediction of fluorescence quantum yields for tryptophan in proteins. J Phys Chem B 108:4248–4259

    CAS  Article  Google Scholar 

  5. Campbell MT, Chen D, Wallbillich NJ, Glish GL (2017) Distinguishing biologically relevant hexoses by water adduction to the lithium-cationized molecule. Anal Chem 89:10504–10510

    CAS  Article  Google Scholar 

  6. Candace MP, Lee JC (2010) Tryptophan probes at the α-synuclein and membrane interface. J Phys Chem B 114:4615–4622

    Article  Google Scholar 

  7. Cleeves LI, Bergin EA, Alexander CMO’D, Du F, Graninger D, Öberg KI, Harries TJ, (2014) The ancient heritage of water ice in the solar system. Science 345:1590–1593

    CAS  Article  Google Scholar 

  8. Cooper G, Rios AC (2016) Enantiomer excesses of rare and common sugar derivatives in carbonaceous meteorites. Proc Natl Acad Sci USA 113:E3322–E3331

    CAS  Article  Google Scholar 

  9. Cronin JR, Pizzarello S (1997) Enantiomeric excesses in meteoritic amino acids. Science 275:951–955

    CAS  Article  Google Scholar 

  10. DeMott PJ, Möhler O, Stetzer O, Vali G, Levin Z, Petters MD, Murakami M, Leisner T, Bundke U, Klein H, Kanji ZA, Cotton R, Jones H, Benz S, Brinkmann M, Rzesanke D, Saathoff H, Nicolet M, Saito A, Nillius B, Bingemer H, Abbatt J, Ardon K, Ganor E, Georgakopoulos DG, Saunders C (2011) Resurgence in ice nuclei measurement research. B Am Meteorol Soc 92:1623–1635

    Article  Google Scholar 

  11. Doan TN, Fujihara A (2018) Enantiomer-selective photo-induced reaction of protonated tryptophan with disaccharides in the gas phase. Orig Life Evol Biosph 48:123–130

    CAS  Article  Google Scholar 

  12. Engel MH, Macko SA (1997) Isotopic evidence for extraterrestrial non-racemic amino acids in the Murchison meteorite. Nature 389:265–268

    CAS  Article  Google Scholar 

  13. Fujihara A, Okawa Y (2018) Chiral and molecular recognition of monosaccharides by photoexcited tryptophan in cold gas-phase noncovalent complexes as a model for chemical evolution in interstellar molecular clouds. Anal Bioanal Chem 410:6279–6287

    CAS  Article  Google Scholar 

  14. Fujihara A, Sato T, Hayakawa S (2014) Enantiomer-selective ultraviolet photolysis of temperature-controlled protonated tryptophan on a chiral crown ether in the gas phase. Chem Phys Lett 610–611:228–233

    Article  Google Scholar 

  15. Fujihara A, Shimada A (2019) Gas-phase N2 adsorption on mass-selected hydrogen-bonded cluster ions. Chem Phys Lett 718:1–6

    CAS  Article  Google Scholar 

  16. Fujihara A, Maeda N, Hayakawa S (2015) Quantitative chiral analysis of tryptophan using enantiomer-selective photolysis of cold non-covalent complexes in the gas phase. J Mass Spectrom 50:451–453

    CAS  Article  Google Scholar 

  17. Fujihara A, Maeda N, Doan TN, Hayakawa S (2017) Enantiomeric excess determination for monosaccharides using chiral transmission to cold gas-phase tryptophan in ultraviolet photodissociation. J Am Soc Mass Spectrom 28:224–228

    CAS  Article  Google Scholar 

  18. Furukawa Y, Chikaraishi Y, Ohkouchi N, Ogawa NO, Glavin DP, Dworkin JP, Abe C, Nakamura T (2019) Extraterrestrial ribose and other sugars in primitive meteorites. Proc Natl Acad Sci USA 116:24440–24445

    CAS  Article  Google Scholar 

  19. Gerlich D, Horning S (1992) Experimental investigation of radiative association processes as related to interstellar chemistry. Chem Rev 92:1509–1539

    CAS  Article  Google Scholar 

  20. Gerlich D, Smith M (2006) Laboratory astrochemistry: studying molecules under inter- and circumstellar conditions. Phys Scr 73:C25–C31

    CAS  Article  Google Scholar 

  21. Gontareva NB, Kuzicheva EA, Shelegedin VN (2009) Synthesis and characterization of peptides after high-energy impact on the icy matrix: Preliminary step for further UV-induced formation. Plan Space Sci 57:441–445

    CAS  Article  Google Scholar 

  22. Hoose C, Möhler O (2012) Heterogeneous ice nucleation on atmospheric aerosols: a review of results from laboratory experiments. Atmos Chem Phys 12:9817–9854

    CAS  Article  Google Scholar 

  23. Kohtani K, Jarrold MF (2004) Water molecule adsorption on short alanine peptides: how short is the shortest gas-phase alanine-based helix? J Am Chem Soc 126:8454–8458

    CAS  Article  Google Scholar 

  24. Kong X, Tsai I-A, Sabu S, Han C-C, Lee YT, Chang H-C, Tu S-Y, Kung AH, Wu C-C (2006) Progressive stabilization of zwitterionic structures in [H(Ser)2–8]+ studied by infrared photodissociation spectroscopy. Angew Chem Int Ed 45:4130–4134

    CAS  Article  Google Scholar 

  25. McGuire BA, Carroll PB, Loomis RA, Finneran IA, Jewell PR, Remijan AJ, Blake GA (2016) Discovery of the interstellar chiral molecule propylene oxide (CH3CHCH2O). Science 352:1449-1452

  26. Miyazaki M, Fujii A, Ebata T, Mikami N (2004) Infrared spectroscopic evidence for protonated water clusters forming nanoscale cages. Science 304:1134–1137

    CAS  Article  Google Scholar 

  27. Muñoz Caro GM, Meierhenrich UJ, Schutte WA, Barbier B, Segovia AA, Rosenbauer H, Thiemann WHP, Brack A, Greenberg JM (2002) Amino acids from ultraviolet irradiation of interstellar ice analogues. Nature 416:403–406

    Article  Google Scholar 

  28. Nanita SC, Cooks RG (2006) Serine octamers: Cluster formation, reactions, and implications for biomolecule homochirality. Angew Chem Int Ed 45:554–569

    CAS  Article  Google Scholar 

  29. Nguyen DT, Fujihara A (2018) Chiral recognition in cold gas-phase cluster ions of carbohydrates and tryptophan probed by photodissociation. Orig Life Evol Biosph 48:395–406

    CAS  Article  Google Scholar 

  30. O’Brien DP, Izidoro A, Jacobson SA, Raymond SN, Rubie DC (2018) The delivery of water during terrestrial planet formation. Space Sci Rev 214:47

    Article  Google Scholar 

  31. Ochiai N, Murashima H, Fujihara A (2020) Quantification of hydroxy groups in carbohydrates using gas-phase N2 adsorption. Chem Phys Lett 750:137484

    CAS  Article  Google Scholar 

  32. Ohshimo K, Mizuuchi I, Akimoto K, Tsukamoto K, Tona M, Yamamoto H, Nakano M, Misaizu F (2017) Mass spectrometric study of N2-adsorption on copper cluster cations formed by modulated pulsed power magnetron sputtering in aggregation cell. Chem Phys Lett 682:60–63

    CAS  Article  Google Scholar 

  33. Patwari GN, Ito T, Egashira K, Terasaki A (2011) Probing structures of small gold cluster cations with dinitrogen. Chem Asian J 6:1834–1838

    CAS  Article  Google Scholar 

  34. Robert F (2001) The origin of water on Earth. Science 293:1056–1058

    CAS  Article  Google Scholar 

  35. Sarafian AR, Nielsen SG, Marshall HR, McCubbin FM, Monteleone BD (2014) Early acceretion of water in the inner solar system from a carbonaceous chondrite-like source. Science 346:623–626

    CAS  Article  Google Scholar 

  36. Spieler S, Duong CH, Kaiser A, Duensing F, Geistlinger K, Fischer M, Yang N, Kumar SS, Johnson MA, Wester R (2018) Vibrational predissociation spectroscopy of cold protonated tryptophan with different messenger tags. J Phys Chem A 122:8037–8046

    CAS  Article  Google Scholar 

  37. Takats Z, Nanita SC, Cooks RG (2003) Serine octamer reactions: Indicators of prebiotic relevance. Angew Chem Int Ed 42:3521–3523

    CAS  Article  Google Scholar 

  38. Vandenbussche S, Vandenbussche G, Reisse J, Bartik K (2006) Do serine octamers exist in solutions? Relevance of this question in the context of the origin of homochirality on Earth. Eur J Org Chem 2006:3069–3073

    Article  Google Scholar 

  39. Zamith S, Feiden P, Labastie P, L’Hermite JM (2010) Attachment cross sections of protonated water clusters. J Chem Phys 133:154305

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Akimasa Fujihara.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Murashima, H., Fujihara, A. Molecular Adsorption on Cold Gas-Phase Hydrogen-Bonded Clusters of Chiral Molecules. Orig Life Evol Biosph 51, 61–70 (2021). https://doi.org/10.1007/s11084-021-09605-4

Download citation

Keywords

  • Molecular cloud
  • Water cluster
  • Mass spectrometry
  • Ion trap
  • Electrospray ionization