Hidden Concepts in the History and Philosophy of Origins-of-Life Studies: a Workshop Report

Abstract

In this review, we describe some of the central philosophical issues facing origins-of-life research and provide a targeted history of the developments that have led to the multidisciplinary field of origins-of-life studies. We outline these issues and developments to guide researchers and students from all fields. With respect to philosophy, we provide brief summaries of debates with respect to (1) definitions (or theories) of life, what life is and how research should be conducted in the absence of an accepted theory of life, (2) the distinctions between synthetic, historical, and universal projects in origins-of-life studies, issues with strategies for inferring the origins of life, such as (3) the nature of the first living entities (the “bottom up” approach) and (4) how to infer the nature of the last universal common ancestor (the “top down” approach), and (5) the status of origins of life as a science. Each of these debates influences the others. Although there are clusters of researchers that agree on some answers to these issues, each of these debates is still open. With respect to history, we outline several independent paths that have led to some of the approaches now prevalent in origins-of-life studies. These include one path from early views of life through the scientific revolutions brought about by Linnaeus (von Linn.), Wöhler, Miller, and others. In this approach, new theories, tools, and evidence guide new thoughts about the nature of life and its origin. We also describe another family of paths motivated by a” circularity” approach to life, which is guided by such thinkers as Maturana & Varela, Gánti, Rosen, and others. These views echo ideas developed by Kant and Aristotle, though they do so using modern science in ways that produce exciting avenues of investigation. By exploring the history of these ideas, we can see how many of the issues that currently interest us have been guided by the contexts in which the ideas were developed. The disciplinary backgrounds of each of these scholars has influenced the questions they sought to answer, the experiments they envisioned, and the kinds of data they collected. We conclude by encouraging scientists and scholars in the humanities and social sciences to explore ways in which they can interact to provide a deeper understanding of the conceptual assumptions, structure, and history of origins-of-life research. This may be useful to help frame future research agendas and bring awareness to the multifaceted issues facing this challenging scientific question.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Adams A, Walker SI (2017) Real-world open-ended evolution: a league of legends adventure. International Journal of Design & Nature and Ecodynamics 12:458–469

    Article  Google Scholar 

  2. Adams A, Zenil H, Davies PCW, Walker SI (2017) Formal definitions of unbounded evolution and innovation reveal universal mechanisms for open-ended evolution in dynamical systems. Sci Rep 7:997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Altenberg L (1994) The evolution of evolvability in genetic programming. Advances in Genetic Programming 3:47–74

    Google Scholar 

  4. Anders E, Hayatsu R, Studier MH (1973) Organic compounds in meteorites. Science 182:781–790

    Article  CAS  Google Scholar 

  5. Andersen JL, Andersen T, Flamm C, Hanczyc MM, Merkle D, Stadler PF (2013a) Navigating the chemical space of HCN polymerization and hydrolysis: guiding graph grammars by mass spectrometry data. Entropy 15:4066–4083

    Article  CAS  Google Scholar 

  6. Andersen JL, Flamm C, Merkle D, Stadler PF (2013b) Inferring chemical reaction patterns using rule composition in graph grammars. J Syst Chem 4:4

    Article  CAS  Google Scholar 

  7. Andersen JL, Flamm C, Merkle D, Stadler PF (2014) Generic strategies for chemical space exploration. Int J Comput Biol Drug Design 7:225–258

  8. Ashby WR (1966) Design for a Brain: the origin of adaptive behaviour. Chapman and Hall, London

    Google Scholar 

  9. Avery OT, MacLeod CM, McCarty M (1944) Studies on the chemical nature of the substance inducing transformation of pneumococcal types: induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J Exp Med 79:137–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Aydinoglu AU, Taskin Z (2016) Origins of life research: a bibliometric approach. Orig. Life Evol. Biosph. 48:55–71. https://doi.org/10.1007/s11084-017-9543-4

  11. Aydinoglu AU, Allard S, Mitchell C (2016) Measuring diversity in disciplinary collaboration in research teams: an ecological perspective. Research Evaluation 25:18–36. https://doi.org/10.1093/reseval/rvv028

    Article  Google Scholar 

  12. Bada JL, Lazcano A (2003) Prebiotic soup - revisiting the Miller experiment. Science 300:745–746

    Article  CAS  Google Scholar 

  13. Bahadur K (1966) Synthesis of Jeewanu: the protocell. Ram Narain Lal Beni Prasad. Uttar Pradesh, India

  14. Bains W (2004) Many chemistries could be used to build living systems. Astrobiology 4:137–167

    Article  CAS  Google Scholar 

  15. Bak P, Tang C, Wiesenfeld K (1987) Self-organized criticality: an explanation of the 1/f noise. Phys Rev Lett 59:381–384

    Article  CAS  Google Scholar 

  16. Ball P (1999) The self-made tapestry: pattern formation in nature. Oxford University Press

  17. Banzhaf W, Yamamoto L (2015) Artificial chemistries. MIT Press, Cambridge

    Google Scholar 

  18. Barge LM, Cardoso SS, Cartwright JH, Cooper GJ, Cronin L, De Wit A, Doloboff IJ, Escribano B, Goldstein RE, Haudin F (2015) From chemical gardens to chemobrionics. Chem Rev 115:8652–8703

    Article  CAS  Google Scholar 

  19. Baynes JW (2005) The Maillard reaction: chemistry at the interface of nutrition, aging, and disease. New York Academy of Sciences, New York

    Google Scholar 

  20. Beatty J (1997) Why do biologists argue like they do? Philos Sci 64:S432–S443

    Article  Google Scholar 

  21. Bedau MA, Packard NH (1991) Measurement of evolutionary activity, teleology, and life. In Artificial Life II. Santa Fe Institute Studies in the Sciences of Complexity,Vol. X, (Redwood City, CA: Addison-Wesley, 1992), pp. 431–461

  22. Bedau MA, McCaskill JS, Packard NH, Rasmussen S, Adami C, Green DG, Ray TS (2000) Open problems in artificial life. Artif Life 6:363–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Beer RD (2004) Autopoiesis and cognition in the game of life. Artif Life 10:309–326

    Article  PubMed  PubMed Central  Google Scholar 

  24. Benkö G, Flamm C, Stadler PF (2003a) Generic properties of chemical networks: artificial chemistry based on graph rewriting. In Advances in Artificial Life, ECAL, Dortmund, Germany:10–19

  25. Benkö G, Flamm C, Stadler PF (2003b) A graph-based toy model of chemistry. J Chem Inf Comput Sci 43(4):1085–1093

    Article  CAS  Google Scholar 

  26. Benkö G, Flamm C, Stadler P (2004) Multi-phase artificial chemistry. The logic of artificial life: abstracting and synthesizing the principles of living systems, 1, 10–20

  27. Benkö G, Flamm C, Stadler P (2005) Explicit collision simulation of chemical reactions in a graph based artificial chemistry. Advances in Artificial Life:725–733

  28. Benner SA, Kim H-J, Carrigan MA (2012) Asphalt, water, and the prebiotic synthesis of ribose, Ribonucleosides, and RNA. Acc Chem Res 45:2025–2034

    Article  CAS  Google Scholar 

  29. Benner SA, Bains W, Seager S (2013) Models and standards of proof in crossdisciplinary science: the case of arsenic DNA. Astrobiology 13:510–513

    Article  CAS  Google Scholar 

  30. Bich L, Green S (2017) Is defining life pointless? Operational definitions at the frontiers of biology. Synthese:1–28

  31. Boltzmann, L. (1886/1974). The second law of thermodynamics. In Theoretical Physics and Philosophical Problems. Edited by McGuinness, B. F. (ed. Springer), p. 24

  32. Booker LB, Goldberg DE, Holland JH (1989) Classifier systems and genetic algorithms. Artif Intell 40:235–282

    Article  Google Scholar 

  33. Boutlerow A (1861) Formation synthétique d’une substance sucrée. C R Acad Sci 53:145–147

    Google Scholar 

  34. Bowler PJ (1989) Evolution: the history of an idea. University of California Press, Berkeley

    Google Scholar 

  35. Bowler PJ (1992) The eclipse of Darwinism: anti-Darwinian evolution theories in the decades around 1900. Johns Hopkins University Press, Baltimore

    Google Scholar 

  36. Bowler PJ (2013) Darwin deleted: imagining a world without Darwin. University of Chicago Press, Chicago

    Google Scholar 

  37. Breslow R (1959) On the mechanism of the formose reaction. Tetrahedron Lett 1(21):22–26

    Article  Google Scholar 

  38. Bunge M (2003) Emergence and convergence: qualitative novelty and the unity of knowledge. University of Toronto Press, Toronto

    Google Scholar 

  39. Cafferty BJ, Hud NV (2015) Was a pyrimidine-pyrimidine base pair the ancestor of Watson-Crick base pairs? Insights from a systematic approach to the origin of RNA. Isr J Chem 55:891–905

  40. Cairns-Smith AG (1971) The life puzzle: on crystals and organisms and on the possibility of a crystal as an ancestor. University of Toronto Press

  41. Campaigne E (1955) Wohler and the overthrow of vitalism. J Chem Educ 32:403

    Article  CAS  Google Scholar 

  42. Campos LA (2015) Radium and the secret of life. University of Chicago Press, Chicago

    Google Scholar 

  43. Canguilhem G (1966) Le concept et la vie. Revue philosophique de Louvain 64:193–223

    Article  Google Scholar 

  44. Caporael LR, Griesemer JR, Wimsatt WC (eds) (2013) Developing scaffolds in evolution, culture, and cognition. (Vienna series in theoretical biology). MIT Press, Cambridge

    Google Scholar 

  45. Cárdenas ML, Benomar S, Cornish-Bowden A (2018) Rosennean complexity and its relevance to ecology. Ecol Complex 35:13–24

    Article  Google Scholar 

  46. Cech TR (1993) The efficiency and versatility of catalytic RNA: implications for an RNA world. Gene 135:33–36

    Article  CAS  Google Scholar 

  47. Chamberlin T, Chamberlin R (1908) Early terrestrial conditions that may have favored organic synthesis. Science 28:897–911

    Article  CAS  Google Scholar 

  48. Chandru K, Gilbert A, Butch C, Aono M, Cleaves HJ II (2016) The abiotic chemistry of thiolated acetate derivatives and the origin of life. Sci Rep 6:29883

  49. Chandru K, Guttenberg N, Giri C, Hongo Y, Butch C, Mamajanov I, Cleaves HJ (2018) Simple prebiotic synthesis of high diversity dynamic combinatorial polyester libraries. Comm Chem 1(1):30

  50. Chargaff E, Lipshitz R, Green C (1952) Composition of the desoxypentose nucleic acids of four genera of sea-urchin. J Biol Chem 195:155–160

    CAS  PubMed  Google Scholar 

  51. Cleaves HJ (2012) Prebiotic chemistry: what we know, what we don't. Evol Edu Outreach 5:342–360

  52. Cleaves HJ, Lazcano A, Mateos IL, Negrín-Mendoza A, Peretó J, Silva E (2014) Herrera's 'Plasmogenia' and other collected works: early writings on the experimental study of the origin of life. Springer, New York

    Google Scholar 

  53. Cleaves HJ, Meringer M, Goodwin J (2015) 227 views of RNA: is RNA unique in its chemical isomer space? Astrobiology 15:538–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cleland CE (2013) Conceptual challenges for contemporary theories of the origin of fife. Curr Org Chem 17:1704–1709

    Article  CAS  Google Scholar 

  55. Cleland CE (2020) The quest for a universal theory of life. Searching for life as we Don’t know it. Cambridge University Press

  56. Cleland CE, Chyba CF (2007) Planets and life: the emerging science of astrobiology. Cambridge University Press, Cambridge

    Google Scholar 

  57. Cleland CE, Copley SD (2005) The possibility of alternative microbial life on earth. Int J Astrobiol 4:165–173

    Article  CAS  Google Scholar 

  58. Corliss J, Baross J, Hoffman S (1981) A hypothesis concerning the relationship between submarine hot springs and the origin of life on earth. Oceanol Acta 4:59–69

    Google Scholar 

  59. Cornish-Bowden A (2015) Tibor Gánti and Robert Rosen: contrasting approaches to the same problem. J Theor Biol 381:6–10

    Article  Google Scholar 

  60. Cornish-Bowden A, Cárdenas ML (2007) Organizational invariance in (M,R) systems. Chem Biodivers 4:2396–2406

    Article  CAS  Google Scholar 

  61. Cornish-Bowden A, Cárdenas ML (2008) Self-organization at the origin of life. J Theor Biol 252:379–387

    Article  CAS  Google Scholar 

  62. Cornish-Bowden A, Cárdenas ML (2017) Life before LUCA. J Theor Biol 434:68–73

    Article  Google Scholar 

  63. Cornish-Bowden A, Cárdenas ML, Letelier JC, Soto-Andrade J (2007) Beyond reductionism: metabolic circularity as a guiding vision for a real biology of systems. Proteomics 7:839–845

    Article  CAS  Google Scholar 

  64. Cronin L, Krasnogor N, Davis BG, Alexander C, Robertson N, Steinke JH, Siepmann P (2006) The imitation game—a computational chemical approach to recognizing life. Nat Biotechnol 24:1203–1206

    Article  CAS  Google Scholar 

  65. Damer B, Deamer D (2015) Coupled phases and combinatorial selection in fluctuating hydrothermal pools: a scenario to guide experimental approaches to the origin of cellular life. Life 5:872–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Davies PC, Lineweaver CH (2005) Finding a second sample of life on earth. Astrobiology 5:154–163

    Article  CAS  Google Scholar 

  67. Dawkins R (1982) Universal Darwinism. In: Bendall DS (ed) Evolution from molecules to men. Cambridge University Press, Cambridge, UK, pp 403–425

    Google Scholar 

  68. Dawkins R (1989) In: Langton CG (ed) Artificial life: the proceedings of an interdisciplinary workshop on the synthesis and simulation of living systems, vol 6. Addison–Wesley, Reading, pp 201–220

    Google Scholar 

  69. De Duve C (1991) Blueprint for a cell: the nature and origin of life. North Patterson

  70. De la Escosura A, Briones C, Ruiz-Mirazo K (2015) The systems perspective at the crossroads between chemistry and biology. J Theor Biol 381:11–22

    Article  CAS  Google Scholar 

  71. Deacon TW (2011) Incomplete nature: how mind emerged from matter. W. W. Norton, New York

    Google Scholar 

  72. Deacon T (2015) Steps to a science of biosemiotics. Green Letts 19:293–311

  73. Deacon, T., Srivastava, A. & Bacigalupi, J. (2014). The transition from constraint to regulation at the origin of life. Frontiers in Bioscience 19, 945–957

  74. Decker P, Schweer H, Pohlmann R (1982) Bioids: X. identification of formose sugars, presumable prebiotic metabolites, using capillary gas chromatography/gas chromatography—mass spectrometry of n-butoxime trifluoroacetates on OV-225. J Chromatogr A 244:281–291

    Article  CAS  Google Scholar 

  75. Deichmann U (2009a) Chemistry and the engineering of life around 1900: research and reflections by Jacques Loeb. Biol Theory 4:323–332

    Article  Google Scholar 

  76. Deichmann U (2009b) Molecular versus “colloidal”: controversies in biology and biochemistry, 1900-1940. Bull Hist Chem 32:105–118

    Google Scholar 

  77. Deichmann U (2012) Crystals, colloids, or molecules?: early controversies about the origin of life and synthetic life. Perspect Biol Med 55:521–542

    Article  CAS  Google Scholar 

  78. Descartes R (1664/2010) Treatise on Man. In: The Nature of Life: Classical and Contemporary Perspectives from Philosophy and Science. Edited by M. A. Bedau & C.E. Cleland. New York, N.Y.: Cambridge University Press, p. 15–20. 9–14. (Original translation published in 1985 by J. Cottingham, R. Stoothoff, and D. Murdoch, Cambridge University Press. Original work published in 1664)

  79. Di Paolo EA (2005) Autopoiesis, adaptivity, teleology, agency. Phenomenol Cogn Sci 4(4):429–452

    Article  Google Scholar 

  80. Di Paolo EA (2009) Extended life. Topoi 28:9–21

    Article  Google Scholar 

  81. Di Paolo, E A., Noble, J. & Bullock, S. (2000). Simulation models as opaque thought experiments. In Proceedings of artificial life VII: the seventh international conference on the simulation and synthesis of living systems. (ed. MIT press). pp. 497–506. MIT, Cambridge, Mass

  82. Dick SJ, Strick JE (2005) The living universe: NASA and the development of astrobiology. Rutgers University Press, New Jersey

    Google Scholar 

  83. Diéguez A (2013) Life as a homeostatic property cluster. Biol Theory 7(2):180–186 10/gd6gns

    Article  Google Scholar 

  84. Dittrich P, Di Fenizio PS (2007) Chemical organisation theory. Bull Math Biol 69(4):1199–1231

    Article  CAS  Google Scholar 

  85. Domingo E, Holland JJ (1997) RNA virus mutations and fitness for survival. Annual Reviews in Microbiology 51:151–178

    Article  CAS  Google Scholar 

  86. Domingo E, Martínez-Salas E, Sobrino F, de la Torre JC, Portela A, Ortín J, VandePol S (1985) The quasispecies (extremely heterogeneous) nature of viral RNA genome populations: biological relevance—a review. Gene 40:1–8

    Article  CAS  Google Scholar 

  87. Douglas H (2016) Values in Science. In: Oxford handbook of philosophy of science. Oxford University Press, pp 609–630

  88. Dray W (1957) Laws and Explanation in history. Oxford University Press, Oxford, UK

    Google Scholar 

  89. Dworkin JP, Lazcano A, Miller SL (2003) The roads to and from the RNA world. J Theor Biol 222:127–134

    Article  CAS  Google Scholar 

  90. Dyson F (1999) Origins of life. Cambridge Cambridge University Press

  91. Eakin RE (1963) An approach to the evolution of metabolism. Proc Natl Acad Sci U S A 49:360–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Egbert MD, Barandiaran X, Di Paolo EA (2012) Behavioral metabolution: the adaptive and evolutionary potential of metabolism-based chemotaxis. Artif Life 18:1–25

    Article  Google Scholar 

  93. Eigen M (1971) Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58:465–523

    Article  CAS  Google Scholar 

  94. Eigen M (1993) Viral quasispecies. Sci Am 269(1):42–49

    Article  CAS  Google Scholar 

  95. Eigen M, Schuster P (1978) The hypercycle. Naturwissenschaften 65:7–41

    Article  Google Scholar 

  96. Eigen M, Schuster P (1979) The Hypercycle. A principle of natural self- organization. Springer-Verlag, Berlin

    Google Scholar 

  97. Eisenberg L, Pellmar TC (2000) Bridging disciplines in the brain, behavioral, and clinical sciences. National Academies Press, Washington D.C

    Google Scholar 

  98. Eschenmoser A (2007) On a hypothetical generational relationship between HCN and constituents of the reductive citric acid cycle. Chem Biodivers 4:554–573

    Article  CAS  Google Scholar 

  99. Eschenmoser A, Kisakürek MV (1996) Chemistry and the origin of life. Helvetica Chimica Acta 79:124

    Article  Google Scholar 

  100. Farley J (1977) The spontaneous generation controversy from Descartes to Oparin. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  101. Farley J, Geison GL (1974) Science, politics and spontaneous generation in nineteenth century France: the Pasteur-Pouchet debate. Bull Hist Med 48(2):161–198

    CAS  PubMed  Google Scholar 

  102. Feinberg G, Shapiro R (1980) Life beyond earth: the intelligent Earthling’s guide to life in the universe. W. Morrow Quill Paperbacks, New York

    Google Scholar 

  103. Ferreira Ruiz MJF, Umerez J (2018) Dealing with the changeable and blurry edges of living things: a modified version of property-cluster kinds. Eur J Philos Sci 8(3):493–518

    Article  Google Scholar 

  104. Ferris JP, Joshi PC, Edelson EH, Lawless JG (1978) HCN: a plausible source of purines, pyrimidines and amino acids on the primitive earth. J Mol Evol 11:293–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Fontana W, Buss LW (1994) What would be conserved if "the tape were played twice?". Proc Natl Acad Sci 91:757–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Fox R (1967) Kinship and marriage: an anthropological perspective. Cambridge University Press, Cambridge

    Google Scholar 

  107. Friston K (2013) Life as we know it. J R Soc Interface 10:20130475

    Article  PubMed  PubMed Central  Google Scholar 

  108. Froese T, Stewart J (2010) Life after Ashby: ultrastability and the autopoietic foundations of biological individuality. Cybernetics & Human Knowing 17:83–106

    Google Scholar 

  109. Froese T, Ikegami T, Virgo N (2012) The behavior-based hypercycle: from parasitic reaction to symbiotic behavior. In C. Adami, D. M. Bryson, C. Ofria, & R. T. Pennock. In: Artificial life 13: proceedings of the thirteenth international conference on the simulation and synthesis of living systems. The MIT Press, Cambridge, pp 457–464

    Google Scholar 

  110. Froese T, Virgo N, Ikegami T (2014) Motility at the origin of life: its characterization and a model. Artif Life 20:55–76

    Article  Google Scholar 

  111. Fry I (1995) Are the different hypotheses on the emergence of life as different as they seem? Biol Philos 10:389–417

    Article  Google Scholar 

  112. Fry I (2000) Emergence of life on Earth: a historical and scientific overview. Rutgers University Press, New Jersey

  113. Fry I (2006) The origins of research into the origins of life. Endeavour 30:24–28

    Article  CAS  Google Scholar 

  114. Gánti T (2000) Levels of life and death. In (2003): The Principles of Life. Oxford University Press, Oxford, pp 1–10

  115. Gánti T (2003) The Principles of Life. Oxford University Press. In: Oxford and New York

  116. Garrison WM, Morrison D, Hamilton J, Benson A, Calvin M (1951) Reduction of carbon dioxide in aqueous solutions by ionizing radiation. Science 114:416–418

    Article  CAS  Google Scholar 

  117. Gilbert W (1986) Origin of life: the RNA world. Nature 319:6055

    Article  Google Scholar 

  118. Giovannelli D, Sievert SM, Hügler M, Markert S, Becher D, Schweder T, Vetriani C (2017) Insight into the evolution of microbial metabolism from the deepbranching bacterium, Thermovibrio ammonificans. eLife 6:e18990

    Article  PubMed  PubMed Central  Google Scholar 

  119. Gleiser M, Nelson B, Walker SI (2012) Chiral polymerization in open systems from chiral-selective reaction rates. Orig Life Evol Biosph 42:333–346

    Article  CAS  Google Scholar 

  120. Gogarten-Boekels M, Hilario E, Gogarten JP (1995) The effects of heavy meteorite bombardment on the early evolution—the emergence of the three domains of life. Orig Life Evol Biosph 25:251–264

    Article  CAS  Google Scholar 

  121. Goldbeter A (2017) Dissipative structures and biological rhythms. Chaos: An Interdisciplinary Journal of Nonlinear Science, 27:104612

  122. Goldenfeld N, Woese C (2007) Biology's next revolution. Nature 445:369–369

    Article  CAS  Google Scholar 

  123. Griesemer J (2008) Origins of life studies. The Oxford Handbook for Philosophy of Biology. (ed. Oxford University Press), 263-299. Oxford University, New York

    Google Scholar 

  124. Guttenberg N, Virgo N, Chandru K, Scharf C, Mamajanov I (2017) Bulk measurements of messy chemistries are needed for a theory of the origins of life. Philos Trans R Soc A Math Phys Eng Sci 375(2109):20160347

    Article  CAS  Google Scholar 

  125. Haldane JBS (1929) The origin of life. The Rationalist Annual 148:3–10

  126. Hartman H (1975) Speculations on the origin and evolution of metabolism. J Mol Evol 4:359–370

    Article  CAS  Google Scholar 

  127. Henderson LJ (1913) The fitness of the environment. Macmillan, Basingstoke

    Google Scholar 

  128. Hershey AD, Chase M (1952) Independent functions of viral protein and nucleic acid in growth of bacteriophage. J Gen Physiol 36:39–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hilton ML, Cooke NJ (2015) Enhancing the effectiveness of team science. National Academies Press, Washington D.C

    Google Scholar 

  130. Holland JJD, De La Torre JC, Steinhauer DA (1992) RNA virus populations as quasispecies. In: Genetic diversity of RNA viruses. Springer, Berlin Heidelberg, pp 1–20

    Google Scholar 

  131. Holmes FL (2004) Investigative pathways: patterns and stages in the careers of experimental scientists. Yale University Press, New Haven

    Google Scholar 

  132. Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, Butterfield CN, Hernsdorf AW, Amano Y, Ise K, Suzuki Y (2016) A new view of the tree of life. Nat Microbiol 1:16048. https://doi.org/10.1038/nmicrobiol.2016.48

    CAS  Article  PubMed  Google Scholar 

  133. Ilardo M, Meringer M, Freeland S, Rasulev B, Cleaves HJ (2015) Extraordinarily adaptive properties of the genetically encoded amino acids. Sci Rep 5:9414

  134. Jabr F (2013) Why life does not really exist. Scientific American https://blogs.scientificamerican.com/brainwaves/why-life-does-not-really-exist/, Accessed: May 29, 2014

  135. Joyce GF, Schwartz AW, Miller SL, Orgel LE (1987) The case for an ancestral genetic system involving simple analogues of the nucleotides. Proc. Natl. Acad. Sci. U. S. A. 84:4398–4402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Joyce GF, Deamer DW, Fleischaker G (1994) Origins of life: the central concepts. Jones and Bartlett, Boston

    Google Scholar 

  137. Judson HF (1979) The eighth day of creation: makers of the revolution in biology. Simon and Schuster, New York, New York

    Google Scholar 

  138. Kampitz G, Fox SW (1969) The condensation of the adenylates of the amino acids common to protein. Proc Natl Acad Sci U S A 62:399–406

    Article  CAS  Google Scholar 

  139. Kauffman SA (1993) The origins of order: self-organization and selection in evolution. Oxford University Press, New York

    Google Scholar 

  140. Kauffman SA (2000) Investigations. Oxford University Press, New York

    Google Scholar 

  141. Kauffman SA (2004) Autonomous agents. In Science and ultimate reality: Quantum theory, cosmology and complexity. (ed. Cambridge University Press), pp. 654–666. Templeton Foundation, Philadelphia and London

  142. Kauffman SA, Clayton P (2009) On emergence, agency, and organization. Biol Philos 21:501–521

    Article  Google Scholar 

  143. Keller EF (2009) Making sense of life: explaining biological development with models, metaphors, and machines. Harvard University Press, Cambridge

    Google Scholar 

  144. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Google Scholar 

  145. King GAM (1980) Evolution of the coenzymes. Biosystems 13:23–45

    Article  CAS  Google Scholar 

  146. King GAM (1982) Recycling, reproduction, and life’s origins. BioSystems 15:89–97

    Article  CAS  Google Scholar 

  147. Koonin EV (2016) Horizontal gene transfer: essentiality and evolvability in prokaryotes, and roles in evolutionary transitions. F1000 Research 5:F1000 Faculty Rev-1805

  148. Koonin EV, Makarova KS, Wolf YI (2017) Evolutionary genomics of defense Systems in Archaea and Bacteria. Annu Rev Microbiol 71:233–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Korzeniewski B (2001) Cybernetic formulation of the definition of life. J Theor Biol 209:275–286

    Article  CAS  Google Scholar 

  150. Kuhn TS (1962) The structure of scientific revolutions. University of Chicago Press, Chicago

    Google Scholar 

  151. Lancet D, Zidovetzki R, Markovitch O (2018) Systems protobiology: origin of life in lipid catalytic networks. J R Soc Interface 15(144):20180159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Langton CG (1984) Self-reproduction in cellular automata. Physica D Nonlinear Phenom 10(1–2):135–144

  153. Langton, C (1998) A new definition of artificial life. http://www.chairetmetal.com/cm03/intro.htm

    Google Scholar 

  154. Latour B (1987) Science in action. Harvard University Press, Cambridge

    Google Scholar 

  155. Lauring AS, Andino R (2010) Quasispecies theory and the behavior of RNA viruses. PLoS Pathog 6:e1001005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Lazcano A (2010) Historical development of origins research. Cold Spring Harb. Perspect. Biol 2:a002089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Lazcano A, Miller SL (1996) The origin and early evolution of life: prebiotic chemistry, the pre-RNA world, and time. Cell 85:793–798

    Article  CAS  Google Scholar 

  158. Letelier J-C, Marín G, Mpodozis J (2003) Autopoietic and (M,R) systems. J Theor Biol 222:261–272

    Article  Google Scholar 

  159. Letelier J-C, Cárdenas ML, Cornish-Bowden A (2011) From L'Homme machine to metabolic closure: steps towards understanding life. J Theor Biol 286:100–113

    Article  Google Scholar 

  160. Lewontin R (1970) The Units of selection. Annu. Rev. Ecol. Syst 1:1–18

    Article  Google Scholar 

  161. Löb W (1913) Über das Verhalten des Formamids unter der Wirkung der stillen Entlandung. Ein Beitrag zur Frage der Stickstoff-Assimilation. Berichte der deutschen chemischen Gesellschaft 46:684–697

    Article  Google Scholar 

  162. Locey KJ, Lennon JT (2016) Scaling laws predict global microbial diversity. Proc Natl Acad Sci 113:5970–5975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Lovejoy AO (1936) The great chain of being: A study of the history of an idea. Harvard University Press, Cambridge Mass

    Google Scholar 

  164. Luisi PL (2006) The Emergence of Life: From Chemical Origins to Synthetic Biology. Cambridge University Press, Cambridge

    Google Scholar 

  165. Machery E (2012) Why I stopped worrying about the definition of life... And why you should as well. Synthese 185:145–164

    Article  Google Scholar 

  166. Malaterre C (2015) Chemical evolution and life. BIO Web of Conferences 4:00002

    Article  Google Scholar 

  167. Mariscal C, Doolittle WF (2018) Life and life only: a radical alternative to life Definitionism. Synthese

  168. Martin WF, Weiss MC, Neukirchen S, Nelson-Sathi S, Sousa FL (2016) Physiology, phylogeny, and LUCA. Microb Cell 3:582–587

    Article  PubMed  PubMed Central  Google Scholar 

  169. Maruyama S, Ikoma M, Genda H, Hirose K, Yokoyama T, Santosh M (2013) The naked planet earth: Most essential pre-requisite for the origin and evolution of life. Geosci Front 4:141–165

    Article  CAS  Google Scholar 

  170. Maturana, H. (1970). Biology of cognition Report 9 Biological Computing Laboratory. University of Illinois, Urbana-Champaign

  171. Maturana HR, Varela FJ (1980) Autopoiesis and cognition: the realisation of the living. D. Reidel Pub. Co, London

    Google Scholar 

  172. Maturana HR, Varela FJ (1992) The tree of knowledge: the biological roots of human understanding. Shambhala, Boston

    Google Scholar 

  173. Maynard Smith J, Szathmáry E (1995) The major transitions in evolution. Oxford University Press, Oxford

    Google Scholar 

  174. McKie D (1944) Wöhler‘s “synthetic” urea and the rejection of vitalism: a chemical legend. Nature 153:608–610

    Article  CAS  Google Scholar 

  175. McMenamin MAS, Margulis L, Vernadsky VI, Ceruti M, Golubic R, Guerrero R, Ikeda N, Ikesawa N, Krumbein WE, Lapo A, Lazcano A, Suzuki D, Tickell C, Walter M, Westbroek P (1998) The biosphere. Springer, New York

    Google Scholar 

  176. McMullin B (2004) Thirty years of computational autopoiesis: a review. ArtifLife 10:277–295

    Google Scholar 

  177. Meléndez-Hevia E, Montero-Gómez N, Montero F (2008) From prebiotic chemistry to cellular metabolism — the chemical evolution of metabolism before Darwinian natural selection. J Theor Biol 252:505–519

    Article  CAS  Google Scholar 

  178. Meringer M, Cleaves HJ, Freeland SJ (2013) Beyond terrestrial biology: charting the chemical universe of α-amino acid structures. J Chem Inf Model 53:2851–2862

    Article  CAS  Google Scholar 

  179. Mesler B, Cleaves HJ (2015) A brief history of creation: science and the search for the origin of life. W. W. Norton Incorporated, New York

    Google Scholar 

  180. Miescher JF (1871) Ueber die chemische. Zusammensetzung der Eiterzellen Medisch-chemische Untersuchungen 4:441–460

    Google Scholar 

  181. Miller SL (1953) A production of amino acids under possible primitive earth conditions. Science 117:528–529

    Article  CAS  Google Scholar 

  182. Mitchell P (1961) Coupling of phosphorylation to Electron and hydrogen transfer by a Chemi-osmotic type of mechanism. Nature 191:144–148

    Article  CAS  Google Scholar 

  183. Mora C, Tittensor DP, Adl S, Simpson AGB, Worm B (2011) How many species are there on earth and in the ocean? PLoS Biol 9:e1001127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Morange M (2009) Life explained. Yale University Press, Connecticut

    Google Scholar 

  185. Morange M (2013) Histoire de la biologie moléculaire. La Découverte, Paris

    Google Scholar 

  186. Morange M (2016) Une histoire de la biologie (inédit). Points, Paris

    Google Scholar 

  187. Moreno A (2016) Some conceptual issues in the transition from chemistry to biology. Hist Philos Life Sci 38:1–16

    Article  Google Scholar 

  188. Moreno A, Mossio M (2015) Introduction. Biological autonomy. A philosophical and theoretical enquiry. Springer, Netherlands

    Google Scholar 

  189. Moreno A, Ruiz-Mirazo K (2009) The problem of the emergence of functional diversity in prebiotic evolution. Biol. Philos 24:585–605

    Article  Google Scholar 

  190. Morowitz HJ (1968) Energy flow in biology: biological organization as a problem in thermal physics, 2nd edn. Academic Press, New York and London

    Google Scholar 

  191. Morowitz HJ (1991) The Thermodynamics of Pizza. Rutgers University Press, Brownstown

    Google Scholar 

  192. Muchowska KB, Varma SJ, Chevallot-Beroux E, Lethuillier-Karl L, Li G, Moran J (2017) Metals promote sequences of the reverse Krebs cycle. Nat Ecol Evol 1:1716–1721

    Article  PubMed  PubMed Central  Google Scholar 

  193. National Academy of Sciences, National Academy of Engineering, and Institute of Medicine (2005) Facilitating Interdisciplinary Research. Washington, DC: The National Academies Press. https://doi.org/10.17226/11153

  194. Nee S, Maynard Smith J (1990) The evolutionary biology of molecular parasites. Parasitology 100:S5–S18

    Article  Google Scholar 

  195. Nelson KE, Robertson PM, Levy M, Miller SL (2001) Concentration by evaporation and the prebiotic synthesis of cytosine. Orig. Life Evol. Biosph. 31:221–229

    Article  CAS  Google Scholar 

  196. Nicolis G, Prigogine I (1977) Self-organization in nonequilibrium systems. Wiley, New York

    Google Scholar 

  197. Nilsson M, Snoad N (2000) Error thresholds for quasispecies on dynamic fitness landscapes. Phys Rev Lett 84:191–194

    Article  CAS  Google Scholar 

  198. Nitschke JR (2009) Systems chemistry: molecular networks come of age. Nature 462:736–738

    Article  CAS  Google Scholar 

  199. Nowak M, Schuster P (1989) Error thresholds of replication in finite populations mutation frequencies and the onset of Muller's ratchet. J Theor Biol 137:375–395

    Article  CAS  Google Scholar 

  200. O'Malley M (2014) Philosophy of microbiology. Cambridge University Press, Cambridge

    Google Scholar 

  201. Oparin AI (1924) The origin of life. Izd. Moskovshii Rabochil, Moscow

  202. Orgel LE (1998a) The origin of life - a review of facts and speculations. Trends Biochem Sci 23:491–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Orgel LE (1998b) The origin of life - how long did it take? Orig Life Evol Biosph 28:91–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Orgel LE (2008) The implausibility of metabolic cycles on the prebiotic earth. PLoS Biol 6:e18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Pearson JE (1993) Complex patterns in a simple system. Science 261(5118):189–192

    Article  CAS  Google Scholar 

  206. Peretó J (2016) Erasing Borders: a brief Chronicle of Early Synthetic Biology. J Mol Evol 83:176–183

    Article  CAS  Google Scholar 

  207. Peretó J, Bada JL, Lazcano A (2009) Charles Darwin and the origin of life. Orig. Life Evol. Biosph 39:395–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Piedrafita G, Montero F, Morán F, Cárdenas ML, Cornish-Bowden A (2010) A simple self-maintaining metabolic system: robustness, autocatalysis, bistability. PLoS Comput Biol 6:e1000872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Porter AL, Cohen AS, Roessner JD, Perreault M (2007) Measuring researcher interdisciplinarity. Scientometrics 72:117–147

    Article  CAS  Google Scholar 

  210. Powell R, Mariscal C (2015) Convergent evolution as natural experiment: the tape of life reconsidered. Interface focus 5:1–13

    Article  Google Scholar 

  211. Prigogine I (1969) Structure, dissipation and life. Theoretical physics and biology, 23–52

  212. Pross A (2012) What is life? How chemistry becomes biology. Oxford University Press, Oxford

    Google Scholar 

  213. Rasmussen S (2009) Protocells: bridging nonliving and living matter. MIT Press, Cambridge

    Google Scholar 

  214. Rasmussen S, Bedau MA, Chen L, Deamer D, Krakauer DC, Packard NH, Stadler PF (2008) Protocells: bridging nonliving and living matter. MIT Press, Cambridge

    Google Scholar 

  215. Remak R (1852) Über extracellulare Entstehung thierischer Zellen und über Vermehrung derselben durch Theilung. Arch Anat Physiol wiss Med 19:47–57

    Google Scholar 

  216. Rosen R (1991) Life itself. Columbia University Press, New York

    Google Scholar 

  217. Ruiz-Mirazo K, Peretó J, Moreno A (2004) A universal definition of life: autonomy and open-ended evolution. Orig. Life Evol. Biosph 34:323–346

    Article  CAS  Google Scholar 

  218. Ruiz-Mirazo K, Umerez J, Moreno A (2008) Enabling conditions for ‘open-ended evolution. Biol. Philos 23:67–85

    Article  Google Scholar 

  219. Ruiz-Mirazo K, Briones C, de la Escosura A (2014) Prebiotic systems chemistry: new perspectives for the origins of life. Chem Rev 114:285–366

    Article  CAS  Google Scholar 

  220. Russell MJ, Hall AJ, Boyce AJ, Fallick AE (2005) 100th anniversary special paper: on hydrothermal convection systems and the emergence of life. Econ Geol 100:419–438

    CAS  Google Scholar 

  221. Scharf C, Virgo N, Cleaves HJ, Aono M, Aubert-Kato N, Aydinoglu A, Barahona A, Barge LM, Benner SA, Biehl M, Brasser R, Butch CJ, Chandru K, Cronin L, Sebastian D, Jakob F, Hernlund J, Hut P, Ikegami T, Jun K, Kobayashi K, Mariscal C, McGlynn S, Menard B, Packard N, Pascal R, Pereto J, Rajamani S, Sinapayen L, Smith E, Switzer C, Takai K, Tian F, Ueno Y, Voytek M, Witkowski O, Hikaru Y (2015) A strategy for origins of life research. Astrobiology 15:1031–1042

    Article  PubMed  PubMed Central  Google Scholar 

  222. Schmitt-Kopplin P, Gabelica Z, Gougeon RD, Fekete A, Kanawati B, Harir M, Gebefuegi I, Eckel G, Hertkorn N (2010) High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall. Proc Natl Acad Sci 107:2763–2768

    Article  Google Scholar 

  223. Schrödinger E (1944) What is life? In: The physical aspect of the living cell. The University Press, Cambridge

    Google Scholar 

  224. Schulze-Makuch D, Irwin LN (2006) The prospect of alien life in exotic forms on other worlds. Naturwissenschaften 93:155–172

    Article  CAS  Google Scholar 

  225. Schuster P (2000) Taming combinatorial explosion. Proc Natl Acad Sci 97:7678–7680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Schwartz AW (2007) Intractable mixtures and the origin of life. Chem Biodivers 4:656–664

    Article  CAS  Google Scholar 

  227. Segrè D, Ben-Eli D, Lancet D (2000) Compositional genomes: prebiotic information transfer in mutually catalytic noncovalent assemblies. Proc Natl Acad Sci 97:4112–4117

    Article  Google Scholar 

  228. Shapiro R (2006) Small molecule interactions were central to the origin of life. Q Rev Biol 81:105–125

    Article  Google Scholar 

  229. Silverman, E. & Bullock, S. (2004). Empiricism in artificial life. In Proceedings of the ninth international conference on artificial life. (ed. MIT Press), pp. 534–539. MIT Cambridge, Mass

  230. Sims K (1994) Evolving 3D morphology and behavior by competition. Artif life 1:353–372

    Article  Google Scholar 

  231. Smith KC (2018) Life as adaptive capacity: bringing new life to an old debate. Biol Theory:1–17

  232. Smith E, Morowitz HJ (2016) The origin and nature of life on earth: the emergence of the fourth geosphere. Cambridge University Press, Cambridge

    Google Scholar 

  233. Spiegelman S, Haruna I, Holland IB, Beaudreau G, Mills D (1965) The synthesis of a self-propagating and infectious nucleic acid with a purified enzyme. Proc Natl Acad Sci U S A 54(3):919–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Stokols, D., Fuqua, J., Gress, J., Harvey, R., Phillips, K., Baezconde-Garbanati,L., Unger, J., Palmer, P., Clark, M. A. & Colby, S. M. (2003). Evaluating transdisciplinary science. Nicotine Tob Res 5, S21-S39

  235. Stott R (2013) Darwin's Ghosts: In Search of the First Evolutionists, Bloomsbury, London. Strick, J. E. (2009). Sparks of life: Darwinism and the Victorian debates over spontaneous generation, Harvard University Press, Cambridge Mass. and London

  236. Strick JE (2009) Sparks of life: Darwinism and the Victorian debates over spontaneous generation. Harvard University Press.

  237. Szathmáry E (2013) On the propagation of a conceptual error concerning hypercycles and cooperation. J Syst Chem 4:1–4

    Article  CAS  Google Scholar 

  238. Szostak JW (2012) Attempts to define life do not help to understand the origin of life. J Biomol Struct Dyn 29:599–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Takeuchi N, Hogeweg P (2007) Error-threshold exists in fitness landscapes with lethal mutants. BMC Evol Biol 7:15

    Article  PubMed  PubMed Central  Google Scholar 

  240. Taskin Z, Aydinoglu AU (2015) Collaborative multidisciplinary astrobiology research: a bibliometric study of the NASA astrobiology institute. Scientometrics 103:1003–1022. https://doi.org/10.1007/s11192-015-1576-8

    Article  Google Scholar 

  241. Taylor T, Bedau M, Channon A, Ackley D, Banzhaf W, Beslon G, Dolson E, Froese T, Hickinbotham S, Ikegami T, McMullin B, Packard N, Rasmussen S, Virgo N, Agmon E, Clark E, McGregor S, Ofria C, Ropella G, Spector L, Stanley KO, Stanton A, Timperley C, Vostinar A, Wiser M (2016) Open-ended evolution: perspectives from the OEE workshop in York. Artif Life 22:408–423

    Article  Google Scholar 

  242. Tuller T, Birin H, Gophna U, Kupiec M, Ruppin E (2010) Reconstructing ancestral gene content by coevolution. Genome Res 20:122–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Turing AM (1990) The chemical basis of morphogenesis. Bull Math Biol 52:153–197

    Article  CAS  Google Scholar 

  244. Vetsigian K, Woese C, Goldenfeld N (2006) Collective evolution and the genetic code. Proc Natl Acad Sci 103:10696–10701

    Article  CAS  Google Scholar 

  245. Virchow R (1859) Die Cellular Pathologie. August Hirschwald, Berlin

  246. Virgo, N., Egbert, M. D. & Froese, T. (2011). The role of the spatial boundary in autopoiesis. In Advances in Artificial Life: Darwin Meets von Neumann. 10th European Conference, ECAL 2009. (ed. Springer), pp. 234–241. Berlin

  247. Virgo, Ikegami McGregor (2016) Complex autocatalysis in simple chemistries. Artificial life. J Sys Chem 22: 138-152

  248. von Kiedrowski G, Otto S, Herdewijn P (2010) Welcome home. Systems Chemists! J Sys Chem 1:1

  249. von Linné (Linnaeus) C (1735/1964) Systema Naturae, Facsimile of the First edition, Edited by Engel-Ledeboer, M. S. J. & Engel, H. Nieuwkoop, B. de Graaf

  250. Von Neumann J, Burks AW (1966) Theory of self-reproducing automata. IEEE Trans Neural Netw 5:3–14

    Google Scholar 

  251. Wächtershäuser G (1988) Before enzymes and templates: theory of surface metabolism. Microbiol Rev 52:452–484

    PubMed  PubMed Central  Google Scholar 

  252. Wagner GP, Altenberg L (1996) Perspective: complex adaptations and the evolution of evolvability. Evolution 50:967–976

    Article  Google Scholar 

  253. Wagner CS, Roessner JD, Bobb K, Klein JT, Boyack KW, Keyton J, Rafols I, Börner K (2011) Approaches to understanding and measuring interdisciplinary scientific research (IDR): a review of the literature. J Infometr 5:14–26

  254. Watson JD, Crick FHC (1953) Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171:737–738

    Article  CAS  Google Scholar 

  255. Watson RA, Mills R, Buckley CL, Kouvaris K, Jackson A, Powers ST et al (2016) Evolutionary connectionism: algorithmic principles underlying the evolution of biological organisation in evo-devo, evo-eco and evolutionary transitions. Evol Biol 43(4):553–581

    Article  Google Scholar 

  256. Weiss MC, Sousa FL, Mrnjavac N, Neukirchen S, Roettger M, Nelson-Sathi S, Martin WF (2016) The physiology and habitat of the last universal common ancestor. Nat Microbiol 1:1–8

    Google Scholar 

  257. Wetter GA (1958) Der dialektische Materialismus und das Problem der Entstehung des Lebens: zur Theorie von AI Oparin. Pustet

  258. Williams TA, Szöllősi GJ, Spang A, Foster PG, Heaps SE, Boussau B, Ettema TJG, Embley TM (2017) Integrative modeling of gene and genome evolution roots the archaeal tree of life. Proc Natl Acad Sci 114:E4602–E4611

  259. Wolfe-Simon F, Blum JS, Kulp TR, Gordon GW, Hoeft SE, Pett-Ridge J, Stolz JF, Webb SM, Weber PK, Davies PC (2011) A bacterium that can grow by using arsenic instead of phosphorus. Science 332:1163–1166

    Article  CAS  Google Scholar 

  260. Wolfram S (2002) A new kind of science. Wolfram Media, Champaign

    Google Scholar 

  261. Zubarev DY, Rappoport D, Aspuru-Guzik A (2015) Uncertainty of prebiotic scenarios: the case of the non-enzymatic reverse tricarboxylic acid cycle. Sci Rep 5:1–7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Earth-Life Science Institute Origins Network (EON) at the Tokyo Institute of Technology for hosting the meeting History and Philosophy of Origins Research Workshop that took place on August 2016 in Tokyo, Japan, which this publication is based. This project/publication was supported by the ELSI Origins Network (EON), which is supported by a grant from the John Templeton Foundation. The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the John Templeton Foundation. T.F.’s work on this article was supported by an ELSI Origins Network (EON) Long-Term Visitor Award and by an UNAM-DGAPA-PAPIIT project (IA104717).

Author information

Affiliations

Authors

Corresponding author

Correspondence to H. James Cleaves II.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mariscal, C., Barahona, A., Aubert-Kato, N. et al. Hidden Concepts in the History and Philosophy of Origins-of-Life Studies: a Workshop Report. Orig Life Evol Biosph 49, 111–145 (2019). https://doi.org/10.1007/s11084-019-09580-x

Download citation

Keywords

  • Theories of life
  • LUCA
  • Multidisciplinary science
  • Prebiotic evolution
  • Self-organization
  • Artificial life
  • Epistemology