Basiuk VA, Gromovoy TY, Golovaty VG, Glukhoy AM (1990) Mechanisms of amino acid polycondensation on silica and alumina surfaces. Orig Life Evol Biosph 20:483–498
Article
Google Scholar
Bhunia S, Singh A, Ojhaa AK (2016) Un-catalyzed peptide bond formation between two monomers of glycine, alanine, serine, threonine, and aspartic acid in gas phase: a density functional theory study. Eur Phys J D 70
Bird RB, Stewart WE, Lightfoot EN (1960) Transport phenomena. John Wiley and Sons, New York
Google Scholar
Borsook H (1953) Peptide bond formation. In: Adv Protein Chem, vol 8. Elsevier, pp 127–174
Eigen M (1971) Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58:465–523
CAS
Article
Google Scholar
Fernandez-Garcia C, Coggins AJ, Powner MW (2017) A Chemist's perspective on the role of phosphorus at the origins of life. Life (Basel) 7. https://doi.org/10.3390/life7030031
Article
Google Scholar
Ferris JP, Hill AR, Liu RH, Orgel LE (1996) Synthesis of long prebiotic oligomers on mineral surfaces. Nature 381:59–61
CAS
Article
Google Scholar
Fitz D, Jakschitz T, Rode BM (2008) The catalytic effect of L- and D-histidine on alanine and lysine peptide formation. J Inorg Biochem 102:2097–2102. https://doi.org/10.1016/j.jinorgbio.2008.07.010
CAS
Article
PubMed
Google Scholar
Forsythe JG, Yu SS, Mamajanov I, Grover MA, Krishnamurthy R, Fernandez FM, Hud NV (2015) Ester-mediated amide bond formation driven by wet-dry cycles: a possible path to polypeptides on the prebiotic earth. Angew Chem Int Ed Engl 54:9871–9875. https://doi.org/10.1002/anie.201503792
CAS
Article
PubMed
PubMed Central
Google Scholar
Forsythe JG, Petrov AS, Millar WC, Yu SS, Krishnamurthy R, Grover MA, Hud NV, Fernández FM (2017) Surveying the sequence diversity of model prebiotic peptides by mass spectrometry. Proc Natl Acad Sci U S A 114:E7652–E7659. https://doi.org/10.1073/pnas.1711631114
CAS
Article
PubMed
PubMed Central
Google Scholar
Gallego I, Grover MA, Hud NV (2015) Folding and imaging of DNA nanostructures in anhydrous and hydrated deep-eutectic solvents. Angew Chem Int Ed Engl 54:6765–6769. https://doi.org/10.1002/anie.201412354
CAS
Article
PubMed
Google Scholar
Gánti T (2003) The principles of life. Oxford University Press
Gao X, Deng H, Tang G, Liu Y, Xu P, Zhao Y (2011) Intermolecular phosphoryl transfer of N-phosphoryl amino acids. Eur J Org Chem 2011(17):3220–3228
Article
Google Scholar
Gibard C, Bhowmik S, Karki M, Kim E-K, Krishnamurthy R (2018) Phosphorylation, oligomerization and self-assembly in water under potential prebiotic conditions. Nat Chem 10:212
CAS
Article
Google Scholar
Huber C, Wächtershäuser G (1998) Peptides by activation of amino acids with CO on (Ni,Fe)S surfaces: implications for the origin of life. Science 281:670–672
CAS
Article
Google Scholar
Hulshof J, Ponnamperuma C (1976) Prebiotic condensation reactions in an aqueous medium: a review of condensing agents. Orig Life 7:197–124
CAS
Article
Google Scholar
Imai E, Honda H, Hatori K, Matsuno K (1999) Autocatalytic synthesis of Oligoglycine in a simulated submarine hydrothermal system. Orig Life Evol Biosph 29:249–259
CAS
Article
Google Scholar
Kauffman SA (1986) Autocatalytic sets of proteins. J Theor Biol 119:1–24
CAS
Article
Google Scholar
Kauffman SA (1993) The origins of order: self-organization and selection in evolution. Oxford University Press, Oxford
Google Scholar
Kitadai N, Maruyama S (2017) Origins of building blocks of life: a review. Geosci Front 9:1117–1153
Article
Google Scholar
Kura G, Nakashima T, Oshima F (1987) Study of the acidic hydrolysis of cyclic trimetaphosphate by liquid chromatography. J Chromatogr A 219:385–391
Article
Google Scholar
Lahav N, White D, Chang S (1978) Peptide formation in the prebiotic era: thermal condensation of Glycine in fluctuating clay environments. Science 201:67–69
CAS
Article
Google Scholar
Lambert J-F (2008) Adsorption and polymerization of amino acids on mineral surfaces: a review. Orig Life Evol Biosph 38:211–242
CAS
Article
Google Scholar
Lane N (2015) The vital question: energy, evolution, and the origins of complex life. W.W. In: Norton & company. New York, London
Google Scholar
Lohrmann R, Ranganathan R, Sawai H, Orgel LE (1975) Prebiotic peptide-formation in the solid state. I. Reactions of benzoate ion and glycine with adenosine 5′-phosphorimidazolide. J Mol Evol 5:57–73
CAS
Article
Google Scholar
Meyerhof O, Shatas R, Kaplan A (1953) Heat of hydrolysis of trimetaphosphate. Biochim Biophys Acta 12:121–127
CAS
Article
Google Scholar
Napier J, Yin J (2006) Formation of peptides in the dry state. Peptides 27:607–610
CAS
Article
Google Scholar
Osterberg R, Orgel L (1972) Polyphosphate and trimetaphosphate formation under potentially prebiotic conditions. J Mol Evol 1:241–248
CAS
Article
Google Scholar
Pascal R, Pross A, Sutherland JD (2013) Towards an evolutionary theory of the origin of life based on kinetics and thermodynamics. Open Biol 3:130156. https://doi.org/10.1098/rsob.130156
CAS
Article
PubMed
PubMed Central
Google Scholar
Pasek MA (2008) Rethinking early earth phosphorus geochemistry. Proc Natl Acad Sci U S A 105:853–858. https://doi.org/10.1073/pnas.0708205105
Article
PubMed
PubMed Central
Google Scholar
Patel BH, Percivalle C, Ritson DJ, Duffy CD, Sutherland JD (2015) Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. Nat Chem 7:301–307
CAS
Article
Google Scholar
Plankensteiner K, Righi A, Rode BM (2002) Glycine and diglycine as possible catalytic factors in the prebiotic evolution of peptides. Orig Life Evol Biosph 32:225–236
CAS
Article
Google Scholar
Rabinowitz J (1970) Peptide and amide bond formation in aqueous solutions of cyclic and linear polyphosphates as a possible prebiotic process. Helv Chim Acta 53:1350–1355
CAS
Article
Google Scholar
Rabinowitz J, Flores J, Kresbach R, Rogers G (1969) Peptide formation in the presence of linear or cyclic polyphosphates. Nature 224:795–796
CAS
Article
Google Scholar
Rishpon J, O'Hara PJ, Lahav N, Lawless JG (1982) Interaction between ATP, metal ions, glycine, and several minerals. J Mol Evol 18:179–184
CAS
Article
Google Scholar
Rode BM (1999) Peptides and the origin of life. Peptides 20:773–786
CAS
Article
Google Scholar
Rode BM, Fitz D, Jakschitz T (2007) The first steps of chemical evolution towards the origin of life. Chem Biodivers 4:2674–2702. https://doi.org/10.1002/cbdv.200790220
CAS
Article
PubMed
Google Scholar
Rodriguez-Garcia M, Surman AJ, Cooper GJ, Suarez-Marina I, Hosni Z, Lee MP, Cronin L (2015) Formation of oligopeptides in high yield under simple programmable conditions. Nat Commun 6:8385. https://doi.org/10.1038/ncomms9385
CAS
Article
PubMed
PubMed Central
Google Scholar
Sakata K, Kitadai N, Yokoyama T (2010) Effects of pH and temperature on dimerization rate of glycine: evaluation of favorable environmental conditions for chemical evolution of life. Geochim Cosmochim Acta 74:6841–6851
CAS
Article
Google Scholar
Sawai H, Lohrmann R, Orgel L (1975) Prebiotic peptide-formation in the solid state. J Mol Evol 6:165–184
CAS
Article
Google Scholar
Schwendinger MG, Rode BM (1989) Possible role of copper and sodium-chloride in prebiotic evolution of peptides. Anal Sci 5:411–414
CAS
Article
Google Scholar
Shimoyama A, Ogasawara R (2002) Dipeptides and diketopiperazines in the Yamato-791198 and Murchison carbonaceous chondrites. Orig Life Evol Biosph 32:165–179
CAS
Article
Google Scholar
Sibilska IK, Chen B, Li L, Yin J (2017) Effects of Trimetaphosphate on abiotic formation and hydrolysis of peptides. Life (Basel) 7. https://doi.org/10.3390/life7040050
Article
Google Scholar
Steen H, Mann M (2004) The ABC's (and XYZ's) of peptide sequencing. Nat Rev Mol Cell Biol 5:699–711. https://doi.org/10.1038/nrm1468
CAS
Article
PubMed
Google Scholar
Weber A, Caroon J, Warden J, Lemmon R, Calvin M (1977) Simultaneous peptide and oligonucleotide formation in mixtures of amino acid, nucleoside triphosphate, imidazole, and magnesium ion. Biosystems 8:277–286
CAS
Article
Google Scholar
Yamagata Y, Watanabe H, Saitoh M, Namba T (1991) Volcanic production of polyphosphates and its relevance to prebiotic evolution. Nature 352:516–519. https://doi.org/10.1038/352516a0
CAS
Article
PubMed
Google Scholar
Ying J, Lin R, Xu P, Wu Y, Liu Y, Zhao Y (2018) Prebiotic formation of cyclic dipeptides under potentially early earth conditions. Sci Rep 8:936
Article
Google Scholar
Zamaraev KI, Romannikov VN, Salganik RI, Wlassoff WA, Khramtsov VV (1997) Modelling of the prebiotic synthesis of oligopeptides: silicate catalysts help to overcome the critical stage. Orig Life Evol Biosph 27:325–337
CAS
Article
Google Scholar