In the Beginning was a Mutualism - On the Origin of Translation

Abstract

The origin of translation is critical for understanding the evolution of life, including the origins of life. The canonical genetic code is one of the most dominant aspects of life on this planet, while the origin of heredity is one of the key evolutionary transitions in living world. Why the translation apparatus evolved is one of the enduring mysteries of molecular biology. Assuming the hypothesis, that during the emergence of life evolution had to first involve autocatalytic systems which only subsequently acquired the capacity of genetic heredity, we propose and discuss possible mechanisms, basic aspects of the emergence and subsequent molecular evolution of translation and ribosomes, as well as enzymes as we know them today. It is possible, in this sense, to view the ribosome as a digital-to-analogue information converter. The proposed mechanism is based on the abilities and tendencies of short RNA and polypeptides to fold and to catalyse biochemical reactions. The proposed mechanism is in concordance with the hypothesis of a possible chemical co-evolution of RNA and proteins in the origin of the genetic code or even more generally at the early evolution of life on Earth. The possible abundance and availability of monomers at prebiotic conditions are considered in the mechanism. The hypothesis that early polypeptides were folding on the RNA scaffold is also considered and mutualism in molecular evolutionary development of RNA and peptides is favoured.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Adamala K, Anella F, Wieczorek R, Stano P, Chiarabelli C, Luisi PL (2014) Open questions in origin of life: experimental studies on the origin of nucleic acids and proteins with specific and functional sequences by a chemical synthetic biology approach. Comput Struct Biotechnol J 9:1–10. https://doi.org/10.5936/csbj.201402004

    Article  Google Scholar 

  2. Adami C (2015) Information-theoretic considerations concerning the origin of life. Orig Life Evol Biosph 45:309–317. https://doi.org/10.1007/s11084-015-9439-0

    PubMed  CAS  Article  Google Scholar 

  3. Annila A, Baverstock K (2014) Genes without prominence: a reappraisal of the foundations of biology. J R Soc Interface 11:20131017. https://doi.org/10.1098/rsif.2013.1017

    PubMed  PubMed Central  Article  Google Scholar 

  4. Athavale SS, Petrov AS, Hsiao C, Watkins D, Prickett CD, Gossett JJ, Lie L, Bowman JC, O’Neill E, Bernier CR, Hud NV, Wartell RM, Harvey SC, Williams LD (2012) RNA folding and catalysis mediated by iron (II). PLoS One 7:e38024. https://doi.org/10.1371/journal.pone.0038024

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  5. Balke D, Kuss A, Müller S (2016) Landmarks in the evolution of (t)-RNAs from the origin of life up to their present role in human cognition. Life 6:4–13. https://doi.org/10.3390/life6010001

    CAS  Article  Google Scholar 

  6. Ban N, Nissen P, Hansen J, Moore PB, Steitz TA (2000) The complete atomic structure of the large ribosomal subunit at 2.4 Ǻ resolution. Science 289:905–920. https://doi.org/10.1126/science.289.5481.905

    PubMed  CAS  Article  Google Scholar 

  7. Baymann F, Lebrun E, Brugna M, Schoepp-Cothenet B, Guidici-Oritconi MT, Nitschke W (2003) The redox protein construction kit: pre-last universal common ancestor evolution of energy-conserving enzymes. Phil Tran R Soc B 358:267–274. https://doi.org/10.1098/rstb.2002.1184

    CAS  Article  Google Scholar 

  8. Beckwith SVW, Sargent AI (1996) Circumstellar disks and the search for neighbouring planetary systems. Nature 383:139–144. https://doi.org/10.1038/383139a0

    PubMed  CAS  Article  Google Scholar 

  9. Bowman JC, Hud NV, Williams LD (2015) The ribosome challenge to the RNA world. J Mol Evol 80:143–161. https://doi.org/10.1007/s0023

    PubMed  CAS  Article  Google Scholar 

  10. Brack A (2007) From interstellar amino acids to prebiotic catalytic peptides: a review. Chem Biodivers 4:665–679. https://doi.org/10.1002/cbdv.200790057

    PubMed  CAS  Article  Google Scholar 

  11. Brack A (2010) Origin of life. In: Encyclopedia of life sciences. John Wiley & Sons, Ltd. (eds), Wiley, Ltd. Chichester. https://doi.org/10.1002/9780470015902.a0001639.pub2

  12. Brandman R, Brandman Y, Pande VS (2012) Sequence coevolution between RNA and protein characterized by mutual information between residue triplets. PLoS One 7:e30022. https://doi.org/10.1371/journal.pone.0030022

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  13. Caetano-Anollés G, Caetano-Anollés D (2015) Computing the origin and evolution of the ribosome from its structure - uncovering processes of macromolecular accretion benefiting synthetic biology. Comput Struct Biotechnol J 13:427–447. https://doi.org/10.1016/j.csbj.2015.07.003

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  14. Caetano-Anollés D, Caetano-Anollés G (2017) Commentary: history of the ribosome and the origin of translation. Front Mol Biosci 3:1–3. https://doi.org/10.3389/fmolb.2016.00087

    CAS  Article  Google Scholar 

  15. Cafferty BJ, Fialho DM, Khanam J, Krishnamurthy R, Hud NV (2016) Spontaneous formation and base pairing of plausible prebiotic nucleotides in water. Nat Commun 7:11328. https://doi.org/10.1038/ncomms11328

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  16. Callahan MP, Smith KE, Cleaves HJ II, Ruzicka J, Stern JC, Glavin DP, House CH, Dworkin JP (2011) Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases. Proc Natl Acad Sci U S A 108:13995–13998. https://doi.org/10.1073/pnas.1106493108

    PubMed  PubMed Central  Article  Google Scholar 

  17. Carter CW Jr, Wolfenden R (2015) tRNA acceptor stem and anticodon bases form independent codes related to protein folding. Proc Natl Acad Sci U S A 112:7489–7494. https://doi.org/10.1073/pnas.1507569112

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  18. Cech TR (2000) The ribosome is a ribozyme. Science 289:878–879. https://doi.org/10.1126/science.289.5481.878

    PubMed  CAS  Article  Google Scholar 

  19. Cech TR, Steitz JA (2014) The noncoding RNA revolution-trashing old rules to forge new ones. Cell 157:77–93. https://doi.org/10.1016/j.cell.2014.03.008

    PubMed  CAS  Article  Google Scholar 

  20. Cleaves HJ, Chalmers JH, Lazcano A, Miller SL, Bada JL (2008) A reassessment of prebiotic organic synthesis in neutral planetary atmospheres. Orig Life Evol Biosph 38:105–115. https://doi.org/10.1007/s11084-007-9120-3

    PubMed  CAS  Article  Google Scholar 

  21. Copley SD, Smith E, Morowitz HJ (2007) The origin of the RNA world: co-evolution of genes and metabolism. Bioorg Chem 35:430–443. https://doi.org/10.1016/j.bioorg.2007.08.001

    PubMed  CAS  Article  Google Scholar 

  22. Corliss JB (1986) On the creation of living cells in submarine hot spring flow reactors: attractors and bifurcations in the natural hierarchy dissipative systems. Orig Life Evol Biosph 19:381–382. https://doi.org/10.1007/BF02422084

    Article  Google Scholar 

  23. Corliss JB, Baross JA, Hoffman SE (1981) An hypothesis concerning the relationships between submarine hot springs and the origin of life on earth. Oceanol Acta, Proccedings of 26th international geological congress, Paris, July 7-17, 1980, pp 59–69

  24. Cupal J, Kopp S, Stadler PF (2000) RNA shape space topology. Artif Lif 6:3–23. https://doi.org/10.1162/106454600568294

    CAS  Article  Google Scholar 

  25. Dalai P, Kaddour H, Sahai N (2016) Incubating life: prebiotic sources of organics for the origin of life. Elements 12:401–406

    CAS  Article  Google Scholar 

  26. Deamer D (2009) First life, and next life. Synthetic biology is a new field, but it’s centered on an old question: how did life begin? Technol Rev 112:66–73

    Google Scholar 

  27. Deamer D, Dworkin JP, Sandford SA, Bernstein MP, Allamandola LJ (2002) The first cell membranes. Astrobiology 2:371–381. https://doi.org/10.1089/153110702762470482

    PubMed  CAS  Article  Google Scholar 

  28. Dixon B (1994) Power unseen, how microbes rule the world. W.H. Freeman and company, New York

    Google Scholar 

  29. Dutta D, Ghosh DK, Mishra AK, Samanta TB (1983) Induction of benz[a]pyren hydroxylase in Aspergillus ochraceus TS: evidences of multiple forms of cytochrome P-450. Biochem Biophys Res Commun 115:692–699. https://doi.org/10.1016/S0006-291X(83)80200-9

    PubMed  CAS  Article  Google Scholar 

  30. de Duve C (1995) The beginnings of life on earth. Am Sci 83:428–437

    Google Scholar 

  31. de Duve C (1998) Clues from present - day biology: the tioester world. In: Brack A (ed) The molecular origins of life. Cambridge University Press, Cambridge, pp 219–236

    Google Scholar 

  32. de Duve C (2003) A research proposal on the origin of life. Orig Life Evol Biosph 33:559–574. https://doi.org/10.1023/A:1025760311436

    PubMed  Article  Google Scholar 

  33. Ehrenfreund P, Rasmussen S, Cleaves J, Chen L (2006) Experimentally tracing the key steps in the origin of life: the aromatic world. Astrobiology 6:490–520. https://doi.org/10.1089/ast.2006.6.490

    PubMed  CAS  Article  Google Scholar 

  34. El-Hani NC, Queiroz J, Emmeche C (2006) A semiotic analysis of the genetic information system. Semiotica 160:1–68. https://doi.org/10.1515/SEM.2006.039

    Article  Google Scholar 

  35. Eschenmoser A (1988) Vitamin B12: experiments concerning the origin of its molecular structure. Angew Chem Int Ed 27:5–39. https://doi.org/10.1002/anie.198800051

    Article  Google Scholar 

  36. Fan K, Wang W (2003) What is the minimum number of letters required to fold a protein? J Mol Biol 328:921–926. https://doi.org/10.1016/S0022-2836(03)00324-3

    PubMed  CAS  Article  Google Scholar 

  37. Ferus M, Pietrucci F, Saitta AM, Knížek A, Kubelík P, Ivaneka O, Shestivska V, Civiša S (2017) Formation of nucleobases in a miller–Urey reducing atmosphere. Proc Natl Acad Sci U S A 114:4306–4311. https://doi.org/10.1073/pnas.1700010114

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  38. Fox GE (2016) Origins and early evolution of the ribosome. In: Hernández G, Jagus R (eds) Evolution of the protein synthesis machinery and its regulation, springer international publishing Switzerland, pp 31–60

    Google Scholar 

  39. Fox S, Strasdeit H (2013) A possible prebiotic origin on volcanic islands of oligopyrrole-type photopigments and electron transfer cofactors. Astrobiology 13:578–595. https://doi.org/10.1089/ast.2012.0934

    PubMed  CAS  Article  Google Scholar 

  40. Fraix-Burnet D, Chattopadhyay T, Chattopadhyay AK, Davoust E, Thuillard M (2012) A six-parameter space to describe galaxy diversification. A & A 545:1–24. https://doi.org/10.1051/0004-6361/201218769

    CAS  Article  Google Scholar 

  41. Friedmann MP, Torbeev V, Zelenay V, Sobol A, Greenwald J, Riek R (2015) Towards prebiotic catalytic amyloids using high throughput screening. PLoS One 10:e0143948. https://doi.org/10.1371/journal.pone.0143948

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  42. Ghosh DK, Dutta D, Samanta TB, Mishra AK (1983) Microsomal benz[a]pyren hydrooxylase in Aspergillus ochraceus TS: assay and characterisation of the enzyme system. Biochem Biophys Res Commun 113:497–505. https://doi.org/10.1016/0006-291X(83)91753-9

    PubMed  CAS  Article  Google Scholar 

  43. Goodwin JT, Mehta AK, Lynn DG (2012) Digital and analog chemical evolution. Acc Chem Res 45:2189–2199. https://doi.org/10.1021/ar300214w

    PubMed  CAS  Article  Google Scholar 

  44. Goodwin JT, Lynn DG, Burrows C, Walker S, Amin S, Armbrust EV (2014) Alternative chemistries of life, Empirical Approaches, A Report from a workshop on alternative chemistries of life: empirical approaches. http://alternativechemistries.emory.edu/report_summary/index.html. Accessed 24 October 2014

  45. Gordon-Smith C (2011) Non-template molecules designed for open-ended evolution. In: Lenaerts T, Giacobini M, Bersini H, Bourgin P, Dorigo M, Doursat R (eds) Advances in artificial life ECAL, proceedings of the eleventh euorpean conference on the synthesis and simulation of living systems. Massachusetts Institute of Technology, USA, pp 268–275

    Google Scholar 

  46. Gorlero M, Wieczorek R, Adamala K, Giorgi A, Schininá ME, Stano P, Luisi PL (2009) Ser-his catalyses the formation of peptides and PNAs. FEBS Lett 583:153–156. https://doi.org/10.1016/j.febslet.2008.11.052

    PubMed  CAS  Article  Google Scholar 

  47. Halevy I, Alesker M, Schuster EM, Popovitz-Biro R, Feldman Y (2017) A key role for green rust in the precambrian oceans and the genesis of iron formations. Nat Geosci 10:135–139. https://doi.org/10.1038/ngeo2878

    CAS  Article  Google Scholar 

  48. Harish A, Caetano-Anolles G (2012) Ribosomal history reveals origins of modern protein synthesis. PLoS One 7:e32776. https://doi.org/10.1371/journal.pone.0032776

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  49. Higgs PG, Lehman N (2014) The RNA world: molecular cooperation at the origins of life. Nat Rev Genet 16:7–17. https://doi.org/10.1038/nrg3841

    PubMed  CAS  Article  Google Scholar 

  50. Higgs PG, Pudritz RE (2009) A thermodynamic basis for prebiotic amino acid synthesis and the nature of the first genetic code. Astrobiology 9:483–490. https://doi.org/10.1089/ast.2008.0280

    PubMed  CAS  Article  Google Scholar 

  51. Ho BK, Dill KA (2006) Folding very short peptides using molecular dynamics. PLoS Comput Biol 2:e27. https://doi.org/10.1371/journal.pcbi.0020060

    PubMed  PubMed Central  Article  Google Scholar 

  52. Hodgson GW, Ponnamperuma C (1968) Prebiotic porphyrin genesis: porphyrins from electric discharge in methane, ammonia and water vapour. Proc Natl Acad Sci U S A 59:22–28

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  53. Hordijk W, Steel M (2014) Conditions for evolvability of autocatalytic sets: a formal example and analysis. Orig Life Evol Biosph 44:111–124. https://doi.org/10.1007/s11084-014-9374-5

    PubMed  CAS  Article  Google Scholar 

  54. Hordijk W, Steel M, Kauffman S (2012) The structure of autocatalytic sets: evolvability, enablement and emergence. Acta Biotheor 60:379–392. https://doi.org/10.1007/s10441-012-9165-1

    PubMed  Article  Google Scholar 

  55. Hsiao C, Williams LD (2009) A recurrent magnesium-binding motif provides a framework for ribosomal peptidyl transferase center. Nucleid Acids Res 37:3134–3142. https://doi.org/10.1093/nar/gkp119

    CAS  Article  Google Scholar 

  56. Hsiao C, Chou IC, Okafor CD, Bowman JC, O’Neill EB, Athavale SS, Petrov AS, Hud NV, Wartell RM, Harvey SC, Williams LD (2013) RNA with iron(II) as a cofactor catalyses electron transfer. Nat Chem 5:525–528. https://doi.org/10.1038/nchem.1649

    PubMed  CAS  Article  Google Scholar 

  57. Hud NV (2016) Our odyssey to find a plausible prebiotic path to RNA: the first twenty years. Synlett 28:36–55. https://doi.org/10.1055/s-0036-1588646

    CAS  Article  Google Scholar 

  58. Hwang S (2012) Investigation of peptide folding by nuclear magnetic resonance spectroscopy. Dissertation, Texas A&M University

  59. Ivica NA, Obermayer B, Campbell GW, Rajamani S, Gerland U, Chen IA (2013) The paradox of dual roles in the RNA world: resolving the conflict between stable folding and templating ability. J Mol Evol 77:55–63. https://doi.org/10.1007/s00239-013-9584-x

    PubMed  CAS  Article  Google Scholar 

  60. Jackson JB (2016) Natural pH gradients in hydrothermal alkali vents were unlikely to have played a role in the origin of life. J Mol Evol 83:1–11. https://doi.org/10.1007/s00239-016-9756-6

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  61. Jadhav VR, Yarus M (2002) Coenzymes as co-ribozymes. Biochimie 84:877–888. https://doi.org/10.1016/S0300-9084(02)01404-9

    PubMed  CAS  Article  Google Scholar 

  62. Jahn D, Moser J, Schubert WD, Heinz DW (2006) Transfer RNA-dependent aminolevulinic acid formation: structure and function of glutamyl-tRNA synthetase, reductase and glutamate-1-semialdehyde-2,1-aminomutase. In: Grimm B, Porra RJ, Rüdiger W, Scheer H (eds) Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. Springer, Netherlands, pp 159–171

    Google Scholar 

  63. Johnson DBF, Wang L (2010) Imprints of the genetic code in the ribosome. Proc Natl Acad Sci U S A 107:8298–8303. https://doi.org/10.1073/pnas.1000704107

    PubMed  PubMed Central  Article  Google Scholar 

  64. Kaddour H, Sahai N (2014) Synergism and mutualism in non-enzymatic RNA polymerization. Life (Basel) 4:598–620. https://doi.org/10.3390/life4040598

    CAS  Article  Google Scholar 

  65. Kappler A, Emerson D, Gralnick JA, Roden EE, Muehe EM (2015) Geomicrobiology of iron, In: Ehrlich HL, Newman DK, Kappler A (eds) Geomicrobiology, 6th edition, CRC Press, pp 343–399

  66. Kasting JF (1993) Earth’s early atmosphere. Science 259:920–926. https://doi.org/10.1126/science.11536547

    PubMed  CAS  Article  Google Scholar 

  67. Kasting JF, Catling D (2003) Evolution of a habitable planet. Annu Rev Astron Astrophys 41:429–463. https://doi.org/10.1146/annurev.astro.41.071601.170049

    CAS  Article  Google Scholar 

  68. Kasting JF, Howard MT (2006) Atmospheric composition and climate on the early earth. Phil Trans R Soc B 361:1733–1742. https://doi.org/10.1098/rstb.2006.1902

    PubMed  CAS  Article  Google Scholar 

  69. Kauffman SA (1971) Cellular homeostasis, epigenesis and replication in randomly aggregated macromolecular systems. J Cybern 1:71–96. https://doi.org/10.1080/01969727108545830

    Article  Google Scholar 

  70. Kauffman S (2007) Question 1: origin of life and the living state. Orig Life Evol Biosph 37:315–322. https://doi.org/10.1007/s11084-007-9093-2

    PubMed  CAS  Article  Google Scholar 

  71. Keller MA, Turchyn AV, Ralser M (2014) Non-enzymatic glycolysis and pentose phosphate pathway-like reactions in a plausible Archean Ocean. Mol Syst Biol 10:725. https://doi.org/10.1002/msb.20145228

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  72. Kelly SL, Kelly DE (2013) Microbial cytochromes P450: biodiversity and biotechnology. Where do cytochromes P450 come from, what do they do and what can they do for us? Phil Trans R Soc B 368:20120476. https://doi.org/10.1098/rstb.2012.0476

    PubMed  CAS  Article  Google Scholar 

  73. Knight R (2007) Reviewers’ comments: wolf YI, Koonin EV: on the origin of the translation system and the genetic code in the RNA world by means of natural selection, and sub functionalization. Biol Direct 2:1–25. https://doi.org/10.1186/1745-6150-2-14

    CAS  Article  Google Scholar 

  74. Kovacs NA, Petrov AS, Lanier KA, Williams LD (2017) Frozen in time: the history of proteins. Mol Biol Evol 34:1252–1260. https://doi.org/10.1093/molbev/msx086

    PubMed  PubMed Central  Article  Google Scholar 

  75. Kurland CG (2010) The RNA dreamtime. Bioassays 32:866–871. https://doi.org/10.1002/bies.201000058

    CAS  Article  Google Scholar 

  76. Lanier KA, Petrov AS, Williams LD (2017a) The central symbiosis of molecular biology: molecules in mutualism. J Mol Evol 85:8–13. https://doi.org/10.1007/s00239-017-9804-x

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  77. Lanier KA, Roy P, Schneider DM, Williams LD (2017b) Ancestral interactions of ribosomal RNA and ribosomal proteins. Biophys J 113:268–276. https://doi.org/10.1016/j.bpj.2017.04.007

    PubMed  CAS  Article  PubMed Central  Google Scholar 

  78. Lawrence HS, Borkowsky W (1983) A new basis for the immunoregulatory activities of transfer factor-an arcane dialect in the language of cells. Cell Immunol 82:102–116

    PubMed  CAS  Article  Google Scholar 

  79. Lehman N, Díaz Arenas C, White WA, Schmidt FJ (2011) Complexity through recombination: from chemistry to biology. Entropy 13:17–37. https://doi.org/10.3390/e13010017

    CAS  Article  Google Scholar 

  80. Lehman N, Bernhard T, Larson BC, Robinson AJN, Southgate CCB (2014) Empirical demonstration of environmental sensing in catalytic RNA: evolution of interpretive behaviour at the origins of life. BMC Evol Biol 14:1–11. https://doi.org/10.1186/s12862-014-0248-2

    CAS  Article  Google Scholar 

  81. Luisi PL (2006) The emergence of life, from chemical origins to synthetic biology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  82. Lupas AN, Alva V (2017) Ribosomal proteins as documents of the transition from unstructured (poly)peptides to folded proteins. J Struct Biol 198:74–81. https://doi.org/10.1016/j.jsb.2017.04.007

    PubMed  CAS  Article  Google Scholar 

  83. Martin W, Baross J, Kelley D, Russell MJ (2008) Hydrothermal vents and the origin of life. Nature 6:805–814. https://doi.org/10.1038/nrmicro1991

    CAS  Article  Google Scholar 

  84. Maynard Smith J, Szathmáry E (1995) The major evolutionary transitions. W.H. Freeman Spectrum, Oxford

    Google Scholar 

  85. Melton DE, Swanner ED, Behrens S, Schmidt C, Kappler A (2014) The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle. Nat Rev Microbiol 12:797–808. https://doi.org/10.1038/nrmicro3347

    PubMed  CAS  Article  Google Scholar 

  86. Michaelian K, Simeonov A (2015) Fundamental molecules of life are pigments which arose and co-evolved as a response to the thermodynamic imperative of dissipating the prevailing solar spectrum. Biogeosciences 12:4913–4937. https://doi.org/10.5194/bg-12-4913-2015

    CAS  Article  Google Scholar 

  87. Miller SL (1953) The production of amino acids under possible primitive earth conditions. Science 117:528–529. https://doi.org/10.1126/science.117.3046.528

    PubMed  CAS  Article  Google Scholar 

  88. Miller SL (1998) The endogenous synthesis of organic compounds. In: Brack A (ed) The molecular origins of life. Cambridge University Press, Cambridge, pp 59–85

    Google Scholar 

  89. Milner-White EJ, Russell MJ (2008) Predicting peptide and protein conformations in early evolution. Biol Direct 3:1–9. https://doi.org/10.1186/1745-6150-3-3

    CAS  Article  Google Scholar 

  90. Milner-White EJ, Russell MJ (2011) Functional capabilities of the earliest peptides and the emergence of life. Genes 2:671–688. https://doi.org/10.3390/genes2040671

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  91. Moore PB, Steitz TA (2010) The roles of RNA in the synthesis of protein. Cold Spring Harb Perspect Biol 3:1–17. https://doi.org/10.1101/cshperspect.a003780

    CAS  Article  Google Scholar 

  92. Moore B, Katz N, Lake G, Dressler A, Oemler A (1996) Galaxy harassment and the evolution of clusters of galaxies. Nature 379:613–616. https://doi.org/10.1038/379613a0

    CAS  Article  Google Scholar 

  93. Murphy M P, O'Neill LAJ (1997) What is life? The next fifty years. An introduction. In: Murphy MP, O' Neill LAJ (eds) What is life? The next fifty years, Cambridge University Press, Cambridge, pp 1–4

  94. Myles IA, Zhao M, Nardone G, Olano LR, Reckhow JD, Saleem D, Break TJ, Lionakis MS, Myers TG, Gardina PJ, Kirkpatrick CH, Holland SM, Datta SK (2016) CD8 + T cells produce a dialyzable antigen-specific activator of dendritic cells. J Leukoc Biol 100:1–14. https://doi.org/10.1002/eji.200526193

    CAS  Article  Google Scholar 

  95. Nelson DR, Goldstone JV, Stegeman JJ (2013) The cytochrome P450 genesis locus: the origin and evolution of animal cytochrome P450s. Phil Trans R Soc B 368:20120474. https://doi.org/10.1098/rstb.2012.0474

    PubMed  CAS  Article  Google Scholar 

  96. Nitschke W, McGlynn SE, Milner-White EJ, Russell MJ (2013) On the antiquity of metalloenzymes and their substrates in bioenergetics. Biochim Biophys Acta 1827:871–881. https://doi.org/10.1016/j.bbabio.2013.02.008

    PubMed  CAS  Article  Google Scholar 

  97. Noller HF (2012) Evolution of protein synthesis from an RNA world. Cold Spring Harb Perspect Biol 4:1–14. https://doi.org/10.1101/cshperspect.a003681

    CAS  Article  Google Scholar 

  98. Noller HF, Hoffarth V, Zimniak L (1992) Unusual resistance of peptidyl transferase to protein extraction procedures. Science 256:1416–1419. https://doi.org/10.1126/science.1604315

    PubMed  CAS  Article  Google Scholar 

  99. Öberg KI, Guzmán VV, Furuya K, Qi C, Aikawa Y, Andrews SM, Loomis R, Wilner DJ (2015) The comet-like composition of a protoplanetary disk as revealed by complex cyanides. Nature 520:198–201. https://doi.org/10.1038/nature14276

    PubMed  CAS  Article  Google Scholar 

  100. Oda A, Fukuyoshi S (2015) Predicting three-dimensional conformations of peptides constructed of only glycine, alanine, aspartic acid, and valine. Orig Life Evol Biosph 45:183–193. https://doi.org/10.1007/s11084-015-9418-5

    PubMed  CAS  Article  Google Scholar 

  101. Okafor CD, Lanier KA, Petrov AS, Athavale S, Bowman JC, Hud NV, Williams LD (2017) Iron mediates catalysis of nucleic acid processing enzymes: support for Fe(II) as a cofactor before the great oxidation event. Nucleic Acids Res 45:3634–3642. https://doi.org/10.1093/nar/gkx171

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  102. Orgel LE (2004) Prebiotic chemistry and the origin of the RNA world. Crit Rev Biochem Mol Biol 39:99–123. https://doi.org/10.1080/10409230490460765

    PubMed  CAS  Article  Google Scholar 

  103. Petrov AS, Bernier CR, Hsiao C, Norris AM, Kovacs NA, Waterbury CC, Stepanov VG, Harvey SC, Fox GE, Wartell RM, Hud NV, Williams LD (2014) Evolution of the ribosome at atomic resolution. Proc Natl Acad Sci U S A 111:10251–10256. https://doi.org/10.1073/pnas.1407205111

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  104. Petrov AS, Gulen B, Norris AM, Kovacs NA, Bernier CR, Lanier KA, Fox GE, Harvey SC, Wartell RM, Hud NV, Williams LD (2015) History of the ribosome and the origin of translation. Proc Natl Acad Sci U S A 112:15396–15401. https://doi.org/10.1073/pnas.1509761112

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  105. Piast RW, Wieczorek R (2017) Origin of life and the phosphate transfer catalyst. Astrobiology 17:277–285. https://doi.org/10.1089/ast.2015.1463

    PubMed  CAS  Article  Google Scholar 

  106. Pizzarello S, Shock E (2010) The organic composition of carbonaceous meteorites: the evolutionary story ahead of biochemistry. Cold Spring Harb Perspect Biol 2:1–20. https://doi.org/10.1101/cshperspect.a002105

    CAS  Article  Google Scholar 

  107. Poole AM, Jeffares DC, Penny D (1998) The path from the RNA world. J Mol Evol 46:1–17. https://doi.org/10.1007/PL00006275

    PubMed  CAS  Article  Google Scholar 

  108. Poon LCH, Methot SP, Morabi-Pazooki W, Pio F, Bennet AJ, Sen D (2011) Guanine-rich RNAs and DNAs that bind heme robustly catalyze oxygen transfer reactions. J Am Chem Soc 133:1877–1884. https://doi.org/10.1021/ja108571a

    PubMed  CAS  Article  Google Scholar 

  109. Pressman A, Blanco C, Chen IA (2015) The RNA world as a model system to study the origin of life. Curr Biol 25:953–963. https://doi.org/10.1016/j.cub.2015.06.016

    CAS  Article  Google Scholar 

  110. Pross A (2004) Causation and the origin of life. Metabolism or replication first? Origin Life Evol Biosph 34:307–321. https://doi.org/10.1023/B:ORIG.0000016446.51012.bc

    CAS  Article  Google Scholar 

  111. Pulido P, Perello C, Rodriguez-Concepcion M (2012) New insights into plant isoprenoid metabolism. Mol Plant 5:964–967. https://doi.org/10.1093/mp/sss088

    PubMed  CAS  Article  Google Scholar 

  112. Raag R, Whitlow M (1995) Single-chain Fvs. FASEB J 9:73–80

    PubMed  CAS  Article  Google Scholar 

  113. Raffaelli N (2011) Nicotinamide coenzyme synthesis: a case of ribonucleotide emergence or a byproduct of the RNA world? In: Egel R (ed) Origins of life: the primal self-organization. Springer-Verlag, Berlin, pp 185–208

    Google Scholar 

  114. Robinson A, Southgate C (2010) A general definition of interpretation and its application to origin of life research. Biol Philos 25:163–181. https://doi.org/10.1007/s10539-009-9188-4

    Article  Google Scholar 

  115. Root-Bernstein M, Root-Bernstein R (2015) The ribosome as a missing link in the evolution of life. J Theor Biol 367:130–158. https://doi.org/10.1016/j.jtbi.2014.11.025

    PubMed  CAS  Article  Google Scholar 

  116. Russell MJ, Hall AJ (2009) The hydrothermal source of energy and materials at the origin of life. In: Zaikowski L, Friedrich JM, Seidel SR (eds) Chemical evolution II: from the origins of life to modern society, ACS symposium series; American chemical society, Washington, pp 45–62

  117. Russell MJ, Nitschke W (2017) Methane: fFuel or exhaust at the emergence of life? Astrobiology 17:1053–1066. https://doi.org/10.1089/ast.2016.1599

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  118. Russell MJ, Daniel RM, Hall AJ, Sherringham JA (1994) A hydrothermally precipitated catalytic iron sulphide membrane as a first step toward life. J Mol Evol 39:231–243. https://doi.org/10.1007/BF00160147

    CAS  Article  Google Scholar 

  119. Russell MJ, Nitschke W, Branscomb E (2013) The inevitable journey to being. Phil Trans R Soc B 368:20120254. https://doi.org/10.1098/rstb.2012.0254

    PubMed  CAS  Article  Google Scholar 

  120. Schönheit P, Buckel W, Martin WF (2016) On the origin of heterotrophy. Trends Microbiol 24:12–25. https://doi.org/10.1016/j.tim.2015.10.003

    PubMed  CAS  Article  Google Scholar 

  121. Sen D, Poon LCH (2011) RNA and DNA complexes with hemin [Fe(III) heme] are efficient peroxidases and peroxygenases: how do they do it and what does it mean? Crit Rev Biochem Mol Biol 46:478–492. https://doi.org/10.3109/10409238.2011.618220

    PubMed  CAS  Article  Google Scholar 

  122. Sephton MA (2002) Organic compounds in carbonaceous meteorites. Nat Prod Rep 19:292–311

    PubMed  CAS  Article  Google Scholar 

  123. Shapiro R (2000) A replicator was not involved in the origin of life. IUBMB Life 49:173–176. https://doi.org/10.1080/713803621

    PubMed  CAS  Article  Google Scholar 

  124. Shapiro R (2007) A simpler origin for life. Sci Am 296:46–53

    PubMed  Article  Google Scholar 

  125. Shapiro JA (2014) Physiology of the read–write genome. J Physiol 592:2319–2341. https://doi.org/10.1113/jphysiol.2014.271130

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  126. Shapiro JA (2016a) Exploring the read-write genome: mobile DNA and mammalian adaptation. Crit Rev Biochem Mol Biol 52:1–17. https://doi.org/10.1080/10409238.2016.1226748

    PubMed  CAS  Article  Google Scholar 

  127. Shapiro JA (2016b) The basic concept of the read-write genome: mini-review on cell-mediated DNA modification. Biosystems 140:35–37. https://doi.org/10.1016/j.biosystems.2015.11.003

    PubMed  CAS  Article  Google Scholar 

  128. Sharov AA (2009) Coenzyme autocatalytic network on the surface of oil microspheres as a model for the origin of life. Int J Mol Sci 10:1838–1852. https://doi.org/10.3390/ijms10041838

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  129. Sharov AA (2016) Coenzyme world model of the origin of life. Biosystems 144:8–17. https://doi.org/10.1016/j.biosystems.2016.03.003

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  130. Shaw GH (2008) Earth’s atmosphere – hadean to early proterozoic. Chem Erde 68:235–264. https://doi.org/10.1016/j.chemer.2008.05.001

    CAS  Article  Google Scholar 

  131. Shi Z, C Olson CA, Rose GD, Baldwin RL, Kallenbach NL (2002) Polyproline II structure in a sequence of seven alanine residues. Proc Natl Acad Sci U S A 99:9190–9195. https://doi.org/10.1073/pnas.112193999

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  132. Simionescu CI, Simionescu BC, Mora R, Leancâ M (1978) Porphyrin-like compounds genesis under simulated abiotic conditions. Orig Life Evol Biosph 9:103–114. https://doi.org/10.1007/978-94-009-8420-2_25

    CAS  Article  Google Scholar 

  133. Škrlj N, Dolinar M (2014) New engineered antibodies against prions. Bioengineered 5(1):10–14. https://doi.org/10.4161/bioe.26069

    PubMed  Article  Google Scholar 

  134. Škrlj N, Čurin Šerbec V, Dolinar M (2010) Single-chain Fv antibody fragments retain binding properties of the monoclonal antibody raised against peptide P1 of the human prion protein. Appl Biochem Biotechnol 160:1808–1821. https://doi.org/10.1007/s12010-009-8699-4

    PubMed  CAS  Article  Google Scholar 

  135. Smith JE, Mowles AK, Mehta AK, Lynn DG (2014) Looked at life from both sides now. Life 4:887–902. https://doi.org/10.3390/life4040887

    PubMed  PubMed Central  Article  Google Scholar 

  136. Sousa FL, Hordijk W, Steel M, Martin WF (2015) Autocatalytic sets in E. coli metabolism. J Syst Chem 6:1–21. https://doi.org/10.1186/s13322-015-0009-7

    CAS  Article  Google Scholar 

  137. Spitzer J, Pielak GJ, Poolman B (2015) Emergence of life: physical chemistry changes the paradigm. Biol Direct 10:1–15. https://doi.org/10.1186/s13062-015-0060-y

    CAS  Article  Google Scholar 

  138. Stryer L (1988) Biochemistry (3rd edition). W.H. Freeman and company, New York, pp 906–910

    Google Scholar 

  139. Su F, Takaya N, Shoun H (2004) Nitrous oxide-forming codenitrification catalyzed by cytochrome P450nor. Biosci Biotechnol Biochem 68:473–475. https://doi.org/10.1271/bbb.68.473

    PubMed  CAS  Article  Google Scholar 

  140. Szathmáry E (2015) Toward major evolutionary transitions theory 2.0. Proc Natl Acad Sci U.S.A. 112:10104–10111. https://doi.org/10.1073/pnas.1421398112

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  141. Szathmáry E, Maynard Smith J (1995) The major evolutionary transitions. Nature 374:227–232. https://doi.org/10.1038/374227a0

    PubMed  Article  Google Scholar 

  142. Taran O, Chen C, Omosun TO, Hsieh M-C, Rha A, Goodwin JT, Mehta AK, Grover MA, Lynn DG (2017) Expanding the informational chemistries of life: peptide/RNA networks. Philos Trans A Math Phys Eng Sci 28:20160356. https://doi.org/10.1098/rsta.2016.0356

    Article  Google Scholar 

  143. Tashiro T, Ishida A, Hori M, Igisu M, Koike M, Méjean P, Takahata N, Sano Y, Komiya T (2017) Early trace of life from 3.95 Ga sedimentary rocks in Labrador, Canada. Nature 549:516–518. https://doi.org/10.1038/nature24019

    PubMed  Article  Google Scholar 

  144. Tessera M (2011) Origin of evolution versus origin of life: a shift of paradigm. Int J Mol Sci 12:3445–3458. https://doi.org/10.3390/ijms12063445

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  145. Ts’o POP (1974) Bases, nucleosides, and nucleotides. In: Ts’o POP (ed) Basic principles in nucleic acid chemistry. Academic Press, New York, pp 453–584

    Google Scholar 

  146. Turk RM, Chumachenko NV, Yarus M (2010) Multiple translational products from a five-nucleotide ribozyme. Proc Natl Acad Sci U S A 107:4585–4589. https://doi.org/10.1073/pnas.0912895107

    PubMed  PubMed Central  Article  Google Scholar 

  147. Turner DH, Mathews DH (2010) NNDB: the nearest neighbor parameter database for predicting stability of nucleic acid secondary structure. Nucleic Acids Res 38:280–282. https://doi.org/10.1093/nar/gkp892

    CAS  Article  Google Scholar 

  148. Vaidya N, Manapat ML, Chen IA, Xulvi-Brunet R, Hayden EJ, Lehman N (2012) Spontaneous network formation among cooperative RNA replicators. Nature 491:72–77. https://doi.org/10.1038/nature11549

    PubMed  CAS  Article  Google Scholar 

  149. Vasas V, Fernando C, Santos M, Kauffman S, Szathmáry E (2012) Evolution before genes. Biol Direct 7:1–14. https://doi.org/10.1186/1745-6150-7-1

    PubMed  PubMed Central  Article  Google Scholar 

  150. Venkateswarlu K, Marsh RM, Faber B, Kelly SL (1996) Investigation of cytochrome P450 mediated benzo[a]pirene hydroxylation in Aspergillus fumigatus. J Chem Tech Biotechnol 66:139–144. https://doi.org/10.1002/(SICI)1097-4660(199606)66:2%3C139::AID-JCTB480%3E3.0.CO;2-D

    CAS  Article  Google Scholar 

  151. Villarreal LP, Witzany G (2015) When competing viruses unify: evolution, conservation, and plasticity of genetic identities. J Mol Evol 80:305–318. https://doi.org/10.1007/s00239-015-9683-y

    PubMed  CAS  Article  Google Scholar 

  152. Vitas M (2011) On the theory of species evolution through natural selection. Original title: O teoriji razvoja vrst s pomočjo naravne selekcije. Apokalipsa: revija za preboj v živo kulturo 152:113–122

  153. Vitas M, Dobovišek A (2014) Evolution, transposition, transformation and flow of information. Anali Pazu 4:66–74

    Google Scholar 

  154. Vitas M, Dobovišek A (2017) On a quest of reverse translation. Found Chem 19:139–155. https://doi.org/10.1007/s10698-016-9260-5

    CAS  Article  Google Scholar 

  155. Viza D, Fudenberg HH, Palareti A, Ablashi D, De Vinci C, Pizza G (2013) Transfer factor: an overlooked potential for the prevention and treatment of infectious diseases. Folia Biol (Praha) 59:53–67

    CAS  Google Scholar 

  156. Wachowius F, Attwater J, Holliger P (2017) Nucleic acids: function and potential for abiogenesis. Q Rev Biophys 50:e4. https://doi.org/10.1017/S0033583517000038

    PubMed  Article  Google Scholar 

  157. Wächtershäuser G (1998) Origin of life in an iron – sulfur world. In: Brack A (ed) The molecular origins of life. Cambridge University Press, Cambridge, pp 206–218

    Google Scholar 

  158. Wächtershäuser G (2006) From volcanic origins of chemoautotrophic life to bacteria, archaea and eukarya. Phil Trans R Soc B 361:1787–1808. https://doi.org/10.1098/rstb.2006.1904

    PubMed  CAS  Article  Google Scholar 

  159. White HB 3rd (1976) Coenzymes as fossils of an earlier metabolic state. J Mol Evol 7:101–104

    PubMed  CAS  Article  Google Scholar 

  160. Wieczorek R, Dörr M, Chotera A, Luisi PL, Monnard PA (2013) Formation of RNA phosphodiester bond by histidine-containing dipeptides. Chembiochem 14:217–223. https://doi.org/10.1002/cbic.201200643

    PubMed  CAS  Article  Google Scholar 

  161. Wieczorek R, Adamala K, Gasperi T, Polticelli F, Stano P (2017) Small and random peptides: an unexplored reservoir of potentially functional primitive organocatalysts. The case of seryl-histidine. Life 7:1–24. https://doi.org/10.3390/life7020019

    CAS  Article  Google Scholar 

  162. Wills PR, Carter CW Jr (2018) Insuperable problems of the genetic code initially emerging in an RNA world. Biosystems 164:155–166. https://doi.org/10.1016/j.biosystems.2017.09.006

    PubMed  CAS  Article  Google Scholar 

  163. Witzany G (2017) Two genetic codes: repetitive syntax for active non-coding RNAs; non-repetitive syntax for the DNA archives. Commun Integr Biol 10:e1297352. https://doi.org/10.1080/19420889.2017.1297352

    PubMed  PubMed Central  Article  Google Scholar 

  164. Yarus M (2010) Getting past the RNA world: the initial Darwinian ancestor. Cold Spring Harb Perspect Biol 1:1–8. https://doi.org/10.1101/cshperspect.a003590

    CAS  Article  Google Scholar 

  165. Yarus M (2011) The meaning of a minuscule ribozyme. Phil Trans R Soc B 366:2902–2909. https://doi.org/10.1098/rstb.2011.0139

    PubMed  CAS  Article  Google Scholar 

  166. Yeates JAM, Lehman N (2016) RNA networks at the origins of life. Biochemist 38:8–12

    Google Scholar 

Download references

Acknowledgements

We would like to sincerely thank everyone who directly or indirectly contributed to the creation of this work. In particular, we would like to thank Michael J. Russell and André Brack for their critical reading of the manuscript and their useful suggestions. We would also like to thank Marko Dolinar, David H. Mathews, Peter F. Stadler, Nita Sahai, Alexei A. Sharov, Aaron Burton, Karo Michaelian, Aleksandar Simeonov, Günther Witzany and Andrew Robinson for the productive discussions and for providing us with valuable clues on references. A special thanks is acknowledged also to Robert Root-Bernstein for a clue regarding transfer factors. We also appreciate Aljaž Bolta’s help in the form of assistance in the preparation of the figures. Andrej Dobovišek acknowledges the financial support from the Slovenian Research Agency (research core funding No. P1-0055).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marko Vitas.

Ethics declarations

Conflict of Interest

The authors declare no competing financial interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vitas, M., Dobovišek, A. In the Beginning was a Mutualism - On the Origin of Translation. Orig Life Evol Biosph 48, 223–243 (2018). https://doi.org/10.1007/s11084-018-9557-6

Download citation

Keywords

  • Origins of life
  • Chemical evolution
  • RNA world hypothesis
  • Cytochrome P450
  • Genetic code
  • Translation