Skip to main content

Environmental Adaptation from the Origin of Life to the Last Universal Common Ancestor

Abstract

Extensive fundamental molecular and biological evolution took place between the prebiotic origins of life and the state of the Last Universal Common Ancestor (LUCA). Considering the evolutionary innovations between these two endpoints from the perspective of environmental adaptation, we explore the hypothesis that LUCA was temporally, spatially, and environmentally distinct from life’s earliest origins in an RNA world. Using this lens, we interpret several molecular biological features as indicating an environmental transition between a cold, radiation-shielded origin of life and a mesophilic, surface-dwelling LUCA. Cellularity provides motility and permits Darwinian evolution by connecting genetic material and its products, and thus establishing heredity and lineage. Considering the importance of compartmentalization and motility, we propose that the early emergence of cellularity is required for environmental dispersal and diversification during these transitions. Early diversification and the emergence of ecology before LUCA could be an important pre-adaptation for life’s persistence on a changing planet.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Abramov O, Mojzsis SJ (2009) Microbial habitability of the Hadean Earth during the late heavy bombardment. Nature 459(7245):419–422

    CAS  PubMed  Article  Google Scholar 

  • Akoopie A, Müller UF (2016) Lower temperature optimum of a smaller, fragmented triphosphorylation ribozyme. Phys Chem Chem Phys 18:20118–20125

    CAS  PubMed  Article  Google Scholar 

  • Allwood AC, Walter MR, Kamber BS, Marshall CP, Burch IW (2006) Stromatolite reef from the Early Archaean era of Australia. Nature 441(7094):714–718

    CAS  PubMed  Article  Google Scholar 

  • Atomi H, Matsumi R, Imanaka T (2004) Reverse gyrase is not a prerequisite for hyperthermophilic life. J Microbiol 186(14):4829–4833

    CAS  Google Scholar 

  • Attwater J, Wochner A, Pinheiro VB, Coulson A, Holliger P (2010) Ice as a protocellular medium for RNA replication. Nat Commun 1:76

    PubMed  Article  CAS  Google Scholar 

  • Attwater J, Wochner A, Holliger P (2013) In-ice evolution of RNA polymerase ribozyme activity. Nat Chem 5(12):1011–1018

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Bada JL, Bigham C, Miller SL (1994) Impact melting of frozen oceans on the early Earth: implications for the origin of life. P Natl Acad Sci USA 91(4):1248–1250

    CAS  Article  Google Scholar 

  • Badro J, Siebert J, Nimmo F (2016) An early geodynamo driven by exsolution of mantle components from Earth’s core. Nature 536(7616):326–328

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Barboni M, Boehnke P, Keller B, Kohl IE, Schoene B, Young ED, McKeegan KD (2017) Early formation of the Moon 4.51 billion years ago. Sci Adv 3(1):e1602365

    PubMed  PubMed Central  Article  Google Scholar 

  • Bargar KE, Fournier RO (1988) Effects of glacial ice on subsurface temperatures of hydrothermal systems in Yellowstone National Park, Wyoming: Fluid-inclusion evidence. Geology 16(12):1077–1080

    Article  Google Scholar 

  • Beckstead AA, Zhang Y, de Vries MS, Kohler B (2016) Life in the light: nucleic acid photoproperties as a legacy of chemical evolution. Phys Chem Chem Phys 18(35):24228–24238

    CAS  PubMed  Article  Google Scholar 

  • Bernal JD (1951) The physical basis of life. Routledge and Paul, London

    Google Scholar 

  • Bernhardt HS (2012) The RNA world hypothesis: the worst theory of the early evolution of life (except for all the others) Biol. Direct 7(1):1

    Article  Google Scholar 

  • Bernstein H (1977) Germ line recombination may be primarily a manifestation of DNA repair processes. J Theor Biol 69(2):371–380

    CAS  PubMed  Article  Google Scholar 

  • Bianconi G, Zhao K, Chen IA, Nowak MA (2013) Selection for replicases in protocells. PLoS Comput Biol 9(5):e1003051

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Biondi E, Branciamore S, Maurel MC, Gallori E (2007) Montmorillonite protection of an UV-irradiated hairpin ribozyme: evolution of the RNA world in a mineral environment. BMC Evol Biol 7(2):S2

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Boehnke P, Harrison TM (2016) Illusory Late Heavy Bombardments. Proc Natl Acad Sci U S A 113(39):10802–10806

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Boussau B, Blanquart S, Necsulea A, Lartillot N, Gouy M (2008) Parallel adaptations to high temperatures in the Archaean eon. Nature 456(7224):942–945

    CAS  PubMed  Article  Google Scholar 

  • Bowring SA, Williams IS (1999) Priscoan (4.00–4.03 Ga) orthogneisses from northwestern Canada. Contrib Mineral Petrol 134(1):3–16

    CAS  Article  Google Scholar 

  • Brochier-Armanet C, Forterre P (2006) Widespread distribution of archaeal reverse gyrase in thermophilic bacteria suggests a complex history of vertical inheritance and lateral gene transfers. Archaea 2(2):83–93

    PubMed Central  Article  Google Scholar 

  • Brooks DJ, Fresco JR, Lesk AM, Singh M (2002) Evolution of amino acid frequencies in proteins over deep time: inferred order of introduction of amino acids into the genetic code. Mol Biol Evol 19(10):1645–1655

    CAS  PubMed  Article  Google Scholar 

  • Brown M (2006) Duality of thermal regimes is the distinctive characteristic of plate tectonics since the Neoarchean. Geology 34(11):961–964

    Article  Google Scholar 

  • Brown ME, Hand KP (2013) Salts and radiation products on the surface of Europa. Astron J 145(4):110

    Article  CAS  Google Scholar 

  • Budin I, Debnath A, Szostak JW (2012) Concentration-driven growth of model protocell membranes. J Am Chem Soc 134(51):20812–20819

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Cabrol NA, Wettergreen D, Warren-Rhodes K, Grin EA, Moersch J, Diaz, GC, et al (2007) Life in the Atacama: Searching for life with rovers (science overview). J Geophys Res-Biogeo 112(G04S02). doi:10.1029/2006JG000298

  • Chen IA, Roberts RW, Szostak JW (2004) The emergence of competition between model protocells. Science 305(5689):1474–1476

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Chyba CF, Hand KP (2001) Life without photosynthesis. Science 292(5524):2026–2027

    CAS  PubMed  Article  Google Scholar 

  • Chyba CF, Phillips CB (2001) Possible ecosystems and the search for life on Europa. Proc Natl Acad Sci U S A 98(3):801–804

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Cnossen I, Sanz-Forcada J, Favata F, Witasse O, Zegers T, Arnold NF (2007) Habitat of early life: Solar X-ray and UV radiation at Earth's surface 4–3.5 billion years ago. J Geol Res E 112(E02008). doi:10.1029/2006JE002784

  • Cockell CS (1998) Biological effects of high ultraviolet radiation on early Earth—a theoretical evaluation. J Theor Biol 193(4):717–729

    CAS  PubMed  Article  Google Scholar 

  • Deamer D, Dworkin JP, Sandford SA, Bernstein MP, Allamandola LJ (2002) The first cell membranes. Astrobiology 2(4):371–381

    CAS  PubMed  Article  Google Scholar 

  • DeChaine EG, Bates AE, Shank TM, Cavanaugh CM (2006) Off-axis symbiosis found: characterization and biogeography of bacterial symbionts of Bathymodiolus mussels from Lost City hydrothermal vents. Environ Microbiol 8(11):1902–1912

    CAS  PubMed  Article  Google Scholar 

  • Draganić Z, Draganić I, Shimoyama A, Ponnamperuma C (1977) Evidence for amino acids in hydrolysates of compounds formed by ionizing radiations. Origins Life 8(4):371–376

    Article  Google Scholar 

  • Engelhart, AE, Adamala KP, Szostak JW (2016) A simple physical mechanism enables homeostasis in primitive cells. Nat Chem 8(5):448-53

  • Feulner G (2012) The faint young Sun problem. Rev Geophys 50(RG2006). doi:10.1029/2011RG000375

  • Forterre P (1996) A hot topic: the origin of hyperthermophiles. Cell 85(6):789–792

    CAS  PubMed  Article  Google Scholar 

  • Forterre P (2002) A hot story from comparative genomics: reverse gyrase is the only hyperthermophile-specific protein. Trends Genet 18(5):236–237

    CAS  PubMed  Article  Google Scholar 

  • Forterre P, Confalonier F, Charbonnier F, Duguet M (1995) Speculations on the origin of life and thermophily: review of available information on reverse gyrase suggests that hyperthermophilic procaryotes are not so primitive. Origins Life Evol B 25(1–3):235–249

    CAS  Article  Google Scholar 

  • Fournier GP, Alm EJ (2015) Ancestral reconstruction of a pre-LUCA aminoacyl-tRNA synthetase ancestor supports the late addition of Trp to the genetic code. J Mol Evol 80(3–4):171–185

    CAS  PubMed  Article  Google Scholar 

  • Fournier GF, Gogarten JP (2010) Rooting the ribosomal tree of life. Mol Biol Evol 27(8):1792–1801

    CAS  PubMed  Article  Google Scholar 

  • Fournier GP, Andam CP, Alm EJ, Gogarten JP (2011) Molecular evolution of aminoacyl tRNA synthetase proteins in the early history of life. Origins Life Evol B 41(6):621–632

    CAS  Article  Google Scholar 

  • Fournier GP, Andam CP, Gogarten JP (2015) Ancient horizontal gene transfer and the last common ancestors. BMC Evol Biol 15(1):1

    CAS  Article  Google Scholar 

  • Galtier N, Tourasse N, Gouy M (1999) A nonhyperthermophilic common ancestor to extant life forms. Science 283(5399):220–221

    CAS  PubMed  Article  Google Scholar 

  • Ganesan A, Hanawalt P (2016) Photobiological Origins of the Field of Genomic Maintenance. Photochem Photobiol 92(1):52–60

    CAS  PubMed  Article  Google Scholar 

  • Garzón L, Garzón ML (2001) Radioactivity as a significant energy source in prebiotic synthesis. Origins Life Evol B 31(1):3–13

    Article  Google Scholar 

  • Gillon M et al (2017) Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature 542(7642):456–460

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Gogarten JP, Taiz L (1992) Evolution of proton pumping ATPases: rooting the tree of life. Photosynth Res 33(2):137–146

    CAS  PubMed  Article  Google Scholar 

  • Gogarten JP et al (1989) Evolution of the vacuolar H+−ATPase: implications for the origin of eukaryotes. Proc Natl Acad Sci U S A 86(17):6661–6665

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Gogarten JP, Starke T, Kibak H, Fishman J, Taiz L (1992) Evolution and isoforms of V-ATPase subunits. J Exp Biol 172(1):137–147

    CAS  PubMed  Google Scholar 

  • Grotzinger JP et al (2014) A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale Crater, Mars. Science 343(6169):1242777

    CAS  PubMed  Article  Google Scholar 

  • Groussin M, Boussau B, Charles S, Blanquart S, Gouy M (2013) The molecular signal for the adaptation to cold temperature during early life on Earth. Biol Lett 9(5):20130608

    PubMed  PubMed Central  Article  Google Scholar 

  • Harris JK, Kelley ST, Spiegelman GB, Pace NR (2003) The genetic core of the universal ancestor. Genome Res 13(3):407–412

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Heijde M, Zabulon G, Corellou F, Ishikawa T, Brazard J, Usman A, Todo T (2010) Characterization of two members of the cryptochrome/photolyase family from Ostreococcus tauri provides insights into the origin and evolution of cryptochromes. Plant Cell Environ 33(10):1614–1626

    CAS  PubMed  Article  Google Scholar 

  • Heine M, Chandra SB (2009) The linkage between reverse gyrase and hyperthermophiles: a review of their invariable association. J Microbiol 47(3):229–234

    CAS  PubMed  Article  Google Scholar 

  • Hilario E, Gogarten JP (1993) Horizontal transfer of ATPase genes—the tree of life becomes a net of life. Biosystems 31(2–3):111–119

    CAS  PubMed  Article  Google Scholar 

  • Hoeppner MP, Gardner PP, Poole AM (2012) Comparative analysis of RNA families reveals distinct repertoires for each domain of life. PLoS Comput Biol 8(11):e1002752

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Horneck G (1993) Responses of Bacillus subtilis spores to space environment: Results from experiments in space. Origins Life Evol B 23(1):37–52

    CAS  Article  Google Scholar 

  • Hren MT, Tice MM, Chamberlain CP (2009) Oxygen and hydrogen isotope evidence for a temperate climate 3.42 billion years ago. Nature 462(7270):205–208

    CAS  PubMed  Article  Google Scholar 

  • Hughes AR, Inouye BD, Johnson MT, Underwood N, Vellend M (2008) Ecological consequences of genetic diversity. Ecol Lett 11(6):609–623

    PubMed  Article  Google Scholar 

  • Islas S, Velasco AM, Becerra A, Delaye L, Lazcano A (2003) Hyperthermophily and the origin and earliest evolution of life. Int Microbiol 6(2):87–94

    CAS  PubMed  Article  Google Scholar 

  • Iwabe N, Kuma KI, Hasegawa M, Osawa S, Miyata T (1989) Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc Natl Acad Sci U S A 86(23):9355–9359

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Jackson JB (2016) Natural pH Gradients in Hydrothermal Alkali Vents Were Unlikely to Have Played a Role in the Origin of Life. J Mol Evol 83(1–2):1–11

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Jangir Y, French S, Momper LM, Moser DP, Amend JP, El-Naggar MY (2016) Isolation and characterization of electrochemically active subsurface Delftia and Azonexus species. Front Microbiol. 7(756). doi:10.3389/fmicb.2016.00756

  • Jékely G (2006) Did the last common ancestor have a biological membrane? Biol Direct 1(1):35

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Kanai S, Kikuno R, Toh H, Ryo H, Todo T (1997) Molecular evolution of the photolyase–blue-light photoreceptor family. J Mol Evol 45(5):535–548

    CAS  PubMed  Article  Google Scholar 

  • Kawamura K, Nagahama M, Kuranoue K (2005) Chemical evolution of RNA under hydrothermal conditions and the role of thermal copolymers of amino acids for the prebiotic degradation and formation of RNA. Adv Space Res 35(9):1626–1633

    CAS  PubMed  Article  Google Scholar 

  • Kienert H, Feulner G, Petoukhov V (2012) Faint young Sun problem more severe due to ice-albedo feedback and higher rotation rate of the early Earth. Geophys Res Lett 39(L23710). doi:10.1029/2012GL054381

  • Kikuchi A, Asai K (1984) Reverse gyrase-a topoisomerase which introduces positive superhelical turns into DNA. Nature 309:677–681

    CAS  PubMed  Article  Google Scholar 

  • Kladwang W, Hum J, Das R (2012) Ultraviolet shadowing of RNA causes substantial non-Poissonian chemical damage in seconds. Sci Rep 2012;2:517. doi: 10.1038/srep00517.

  • Koeberl C (2006) Impact processes on the early Earth. Elements 2(4):211–216

    CAS  Article  Google Scholar 

  • Koga Y, Kyuragi T, Nishihara M, Sone N (1998) Did archaeal and bacterial cells arise independently from noncellular precursors? A hypothesis stating that the advent of membrane phospholipid with enantiomeric glycerophosphate backbones caused the separation of the two lines of descent. J Mol Evol 46(1):54–63

    CAS  PubMed  Article  Google Scholar 

  • Koonin EV (2003) Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat Rev Microbiol 1(2):127–136

    CAS  PubMed  Article  Google Scholar 

  • Koonin EV, Martin W (2005) On the origin of genomes and cells within inorganic compartments. Trends Genet 21(12):647–654

    CAS  PubMed  Article  Google Scholar 

  • Kua J, Bada JL (2011) Primordial ocean chemistry and its compatibility with the RNA world. Origins Life Evol B 41(6):553–558

    CAS  Article  Google Scholar 

  • Lanier KA, Athavale SS, Petrov AS, Wartell R, Williams LD (2016) Imprint of Ancient Evolution on rRNA Folding. Biochemistry 55(33):4603–4613

    CAS  PubMed  Article  Google Scholar 

  • Lanier KA, Roy P, Schneider DM, Williams LD (2017) Ancestral Interactions of Ribosomal RNA and Ribosomal Proteins. Biophys J. doi:10.1016/j.bpj.2017.04.007

  • Lazcano A (1995) Cellular evolution during the early Archean: what happened between the progenote and the cenancestor? Microbiol SEM 11:185–198

    CAS  Google Scholar 

  • Lazcano A, Guerrero R, Margulis L, Oro J (1988) The evolutionary transition from RNA to DNA in early cells. J Mol Evol 27(4):283–290

    CAS  PubMed  Article  Google Scholar 

  • Levy M, Miller SL (1998) The stability of the RNA bases: implications for the origin of life. P Natl A Sci USA 95(14):7933–7938

    CAS  Article  Google Scholar 

  • Levy M, Miller SL, Brinton K, Bada JL (2000) Prebiotic synthesis of adenine and amino acids under Europa-like conditions. Icarus 145(2):609–613

    CAS  PubMed  Article  Google Scholar 

  • Lipenkov VY, Ekaykin AA, Polyakova EV, Raynaud D (2016) Characterization of subglacial Lake Vostok as seen from physical and isotope properties of accreted ice. Phil Trans R Soc A 374(2059):20140303

    PubMed  Article  CAS  Google Scholar 

  • Lombard J, López-García P, Moreira D (2012) The early evolution of lipid membranes and the three domains of life. Nat Rev Microbiol 10(7):507–515

    CAS  PubMed  Article  Google Scholar 

  • Lyons TW, Reinhard CT, Planavsky NJ (2014) The rise of oxygen in Earth's early ocean and atmosphere. Nature 506(7488):307–315

    CAS  PubMed  Article  Google Scholar 

  • Mansy SS, Szostak JW (2008) Thermostability of model protocell membranes. P Natl A Sci USA 105(36):13351–13355

    CAS  Article  Google Scholar 

  • Margesin R, Miteva V (2011) Diversity and ecology of psychrophilic microorganisms. Res Microbiol 162(3):346–361

    PubMed  Article  Google Scholar 

  • Margulis L (1981) Symbiosis in cell evolution: Life and its environment on the early earth. WH Freeman & Co, San Francisco

    Google Scholar 

  • Martin W, Russell MJ (2003) On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philos T Roc Soc B 358(1429):59–85

    CAS  Article  Google Scholar 

  • Martin W, Baross J, Kelley D, Russell MJ (2008) Hydrothermal vents and the origin of life. Nat Rev Microbiol 6(11):805–814

    CAS  PubMed  Article  Google Scholar 

  • McCollom TM (2013) Miller-Urey and beyond: what have we learned about prebiotic organic synthesis reactions in the past 60 years? Annu Rev Earth Pl Sc 41:207–229

    CAS  Article  Google Scholar 

  • McKay CP, Anbar AD, Porco C, Tsou P (2014) Follow the plume: The habitability of Enceladus. Astrobiology 14(4):352–355

    CAS  PubMed  Article  Google Scholar 

  • McLoughlin N, Grosch EG, Kilburn MR, Wacey D (2012) Sulfur isotope evidence for a Paleoarchean subseafloor biosphere, Barberton, South Africa. Geology 40(11):1031–1034

    CAS  Article  Google Scholar 

  • Mirkin BG, Fenner TI, Galperin MY, Koonin EV (2003) Algorithms for computing parsimonious evolutionary scenarios for genome evolution, the last universal common ancestor and dominance of horizontal gene transfer in the evolution of prokaryotes. BMC Evol Biol 3(1):1

    Article  Google Scholar 

  • Miyakawa S, Cleaves JH, Miller SL (2002) The cold origin of life: B Implications based on pyrimidines and purines produced from frozen ammonium cyanide solutions. Origins Life Evol B 32(3):209–218

    CAS  Article  Google Scholar 

  • Mojzsis SJ, Harrison TM, Pidgeon RT (2001) Oxygen-isotope evidence from ancient zircons for liquid water at the Earth's surface 4,300 Myr ago. Nature 409(6817):178–181

    CAS  PubMed  Article  Google Scholar 

  • Monnard PA, Apel CL, Kanavarioti A, Deamer DW (2002) Influence of ionic inorganic solutes on self-assembly and polymerization processes related to early forms of life: Implications for a prebiotic aqueous medium. Astrobiology 2(2):139–152

    CAS  PubMed  Article  Google Scholar 

  • Moulton V, Gardner PP, Pointon RF, Creamer LK, Jameson GB, Penny D (2000) RNA folding argues against a hot-start origin of life. J Mol Evol 51(4):416–421

    CAS  PubMed  Article  Google Scholar 

  • Myers JS (2001) Protoliths of the 3.8–3.7 Ga Isua greenstone belt, west Greenland. Precambrian Res 105(2):129–141

    CAS  Article  Google Scholar 

  • Nagel GM, Doolittle RF (1995) Phylogenetic analysis of the aminoacyl-tRNA synthetases. J Mol Evol 40(5):487–498

    CAS  PubMed  Article  Google Scholar 

  • O’Malley-James JT, Kaltenegger L (2017) UV surface habitability of the TRAPPIST-1 system. Mon Not R Astron 469(1):L26–L30

    Article  Google Scholar 

  • Ohtomo Y, Kakegawa T, Ishida A, Nagase T, Rosing MT (2014) Evidence for biogenic graphite in early Archaean Isua metasedimentary rocks. Nat Geosci 7(1):25–28

    CAS  Article  Google Scholar 

  • Peterson G, Allen CR, Holling CS (1998) Ecological resilience, biodiversity, and scale. Ecosystems 1(1):6–18

    Article  Google Scholar 

  • Petit C, Sancar A (1999) Nucleotide excision repair: from E. coli to man. Biochimie 81(1):15–25

    CAS  PubMed  Article  Google Scholar 

  • Petrov AS et al (2015) History of the ribosome and the origin of translation. Proc Natl Acad Sci U S A 112(50):15396–15401

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Poole AM, Jeffares DC, Penny D (1998) The path from the RNA world. J Mol Evol 46(1):1–17

    CAS  PubMed  Article  Google Scholar 

  • Powner MW, Gerland B, Sutherland JD (2009) Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459(7244):239–242

    CAS  PubMed  Article  Google Scholar 

  • Price PB (2007) Microbial life in glacial ice and implications for a cold origin of life. FEMS Microbiol Ecol 59(2):217–231

    CAS  PubMed  Article  Google Scholar 

  • Rambler MB, Margulis L (1980) Bacterial resistance to ultraviolet irradiation under anaerobiosis: implications for pre-phanerozoic evolution. Science 210(4470):638–640

    CAS  PubMed  Article  Google Scholar 

  • Ranea JA, Sillero A, Thornton JM, Orengo CA (2006) Protein superfamily evolution and the last universal common ancestor. (LUCA). J Mol Evol 63(4):513–525

    CAS  PubMed  Article  Google Scholar 

  • Ranjan S, Sasselov DD (2016) Influence of the UV Environment on the Synthesis of Prebiotic Molecules. Astrobiology 16(1):68–88

    CAS  PubMed  Article  Google Scholar 

  • Ravanat JL, Douki T (2016) UV and ionizing radiations induced DNA damage, differences and similarities. Radiat Phys Chem 128:92–102

    CAS  Article  Google Scholar 

  • Reusch TB, Ehlers A, Hämmerli A, Worm B (2005) Ecosystem recovery after climatic extremes enhanced by genotypic diversity. Proc Natl Acad Sci USA Proceedings of the National Academy of Sciences of the United States of America 102(8):2826–2831

    CAS  PubMed  Article  Google Scholar 

  • Ritson D, Sutherland JD (2012) Prebiotic synthesis of simple sugars by photoredox systems chemistry. Nat Chem 4(11):895–899

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409(6823):1092–1101

    CAS  PubMed  Article  Google Scholar 

  • Russell MJ, Hall AJ (1997) The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J Geol Soc Lond 154(3):377–402

    CAS  Article  Google Scholar 

  • Sagan C (1957) Radiation and the origin of the gene. Evolution 11(1):40-55

  • Schopf JW (1993) Microfossils of the Early Archean Apex chert: new evidence of the antiquity of life. Science 260(5108):640–646

    CAS  PubMed  Article  Google Scholar 

  • Shimada H, Yamagishi A (2011) Stability of heterochiral hybrid membrane made of bacterial sn-G3P lipids and archaeal sn-G1P lipids. Biochemistry 50(19):4114–4120

    CAS  PubMed  Article  Google Scholar 

  • Sluijs A, Schouten S, Pagani M, Woltering M, Brinkhuis H, Damsté JSS et al (2006) Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum. Nature 441(7093):610–613

    CAS  PubMed  Article  Google Scholar 

  • Sparks WB, Schmidt BE, McGrath MA, Hand KP, Spencer JR, Cracraft M, Deustua SE (2017) Active Cryovolcanism on Europa? Astrophys J Lett 839(2):L18

    Article  Google Scholar 

  • Stal LJ (1995) Physiological ecology of cyanobacteria in microbial mats and other communities. New Phytol 131(1):1–32

    CAS  Article  Google Scholar 

  • Stephenson JD, Freeland SJ (2013) Unearthing the root of amino acid similarity. J Mol Evol 77(4):159–169

    CAS  PubMed  Article  Google Scholar 

  • Stern RJ (2005) Evidence from ophiolites, blueschists, and ultrahigh-pressure metamorphic terranes that the modern episode of subduction tectonics began in Neoproterozoic time. Geology 33(7):557–560

    Article  Google Scholar 

  • Sugitani K, Lepot K, Nagaoka T, Mimura K, Van Kranendonk M, Oehler DZ, Walter MR (2010) Biogenicity of morphologically diverse carbonaceous microstructures from the ca. 3400 Ma Strelley Pool Formation, in the Pilbara Craton. Western Australia Astrobiology 10(9):899–920

  • Sutherland JD (2017) Opinion: Studies on the origin of life—the end of the beginning. Nat Rev Chem 1:0012

    Article  Google Scholar 

  • Szostak JW, Bartel DP, Luisi PL (2001) Synthesizing life. Nature 409(6818):387–390

    CAS  PubMed  Article  Google Scholar 

  • Tang M, Chen K, Rudnick RL (2016) Archean upper crust transition from mafic to felsic marks the onset of plate tectonics. Science 351(6271):372–375

    CAS  PubMed  Article  Google Scholar 

  • Tarduno JA, Cottrell RD, Smirnov AV (2006) The paleomagnetism of single silicate crystals: Recording geomagnetic field strength during mixed polarity intervals, superchrons, and inner core growth. Rev Geophys 44(RG1002). doi:10.1029/2005RG000189

  • Trinks H, Schröder W, Biebricher CK (2005) Ice and the origin of life. Origins Life Evol B 35(5):429–445

    CAS  Article  Google Scholar 

  • Ueno Y, Yamada K, Yoshida N, Maruyama S, Isozaki Y (2006) Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature 440(7083):516–519

    CAS  PubMed  Article  Google Scholar 

  • Valley JW, Peck WH, King EM, Wilde SA (2002) A cool early Earth. Geology 30(4):351–354

    CAS  Article  Google Scholar 

  • Vincent WF, Mueller D, Van Hove P, Howard-Williams C (2004) Glacial periods on early Earth and implications for the evolution of life. In: Seckbach J (ed) Origins. Springer, Netherlands, pp 483–501

    Chapter  Google Scholar 

  • Wacey D (2010) Stromatolites in the ∼3400 Ma Strelley Pool Formation, Western Australia: examining biogenicity from the macro-to the nano-scale. Astrobiology 10(4):381–395

    CAS  PubMed  Article  Google Scholar 

  • Westall F, De Ronde CE, Southam G, Grassineau N, Colas M, Cockell C, Lammer H (2006) Implications of a 3472–3333 Gyr-old subaerial microbial mat from the Barberton greenstone belt, South Africa for the UV environmental conditions on the early Earth. Philosophical Philos T Roc Soc B 361(1474):1857–1876

    CAS  Article  Google Scholar 

  • Wienken CJ, Baaske P, Duhr S, Braun D (2011) Thermophoretic melting curves quantify the conformation and stability of RNA and DNA. Nucleic Acids Res 39(8):e52. doi: 10.1093/nar/gkr035

  • Wilde SA, Valley JW, Peck WH, Graham CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409:175–118

    CAS  PubMed  Article  Google Scholar 

  • Witkin EM (1969) Ultraviolet-induced mutation and DNA repair. Annu Rev Genet Review of Genetics 3(1):525–552

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51(2):221

  • Wolf ET, Toon OB (2010) Fractal organic hazes provided an ultraviolet shield for early Earth. Science 328(5983):1266–1268

    CAS  PubMed  Article  Google Scholar 

  • Zeldovich KB, Berezovsky IN, Shakhnovich EI (2007) Protein and DNA sequence determinants of thermophilic adaptation. PLoS Comput Biol 3(1):e5

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Zhu TF, Adamala K, Zhang N, Szostak JW (2012) Photochemically driven redox chemistry induces protocell membrane pearling and division. P Natl A Sci USA 25:9828–9832

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the Simons Foundation through the Simons Collaboration on the Origins of Life (Award #339603) and the NASA Astrobiology Institute (supplement to award #MIT/NNA13AA90A) M. D. Cantine was supported by a Whiteman Fellowship through MIT. The authors thank two anonymous reviewers for their feedback on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory P. Fournier.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cantine, M.D., Fournier, G.P. Environmental Adaptation from the Origin of Life to the Last Universal Common Ancestor. Orig Life Evol Biosph 48, 35–54 (2018). https://doi.org/10.1007/s11084-017-9542-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11084-017-9542-5

Keywords

  • Origin of life
  • Last universal common ancestor (LUCA)
  • Environmental adaptation