On the Ability of Formaldehyde to Act as a Tethering Catalyst in Water

Abstract

The low concentration issue is a fundamental challenge when it comes to prebiotic chemistry, as macromolecular systems need to be assembled via intermolecular reactions, and this is inherently difficult in dilute solutions. This is especially true when the reactions are challenging, and reactions that proceeded more rapidly could have dictated chemical evolution. Herein we establish that formaldehyde is capable of catalyzing, via temporary intramolecularity, a challenging reaction in water at low concentrations, thus providing an alternative to other approaches that can either lead to higher concentrations or higher effective molarities.

This is a preview of subscription content, log in to check access.

Scheme 1
Scheme 2
Fig. 1
Fig. 2

Notes

  1. 1.

    Removal of oxygen was required due to the sensitivity of the reagents to oxygen over time, which caused reproducibility issues for the background reaction. Oxidation of the N-methyl group of either reagent can lead to formation of formaldehyde, which likely explains the variability in the results obtained without degassing, especially at long reaction times.

References

  1. Bada JL (2004) How life began on earth: a status report. Earth Planet Sci Lett 226:1–15

    CAS  Article  Google Scholar 

  2. Beaver MG, Langille NF, Cui S, Fang Y, Bio MM, Potter-Racine MS, Tan H, Hansen KB (2016) Crystallization-induced dynamic resolution of diarylmethylamine towards the synthesis of a potent TRPM8 inhibitor. Org Process Res Dev 20:1341–1346

    CAS  Article  Google Scholar 

  3. Bernal JD (1949) The physical basis of life. Proc Phys Soc 62:597–617

    Article  Google Scholar 

  4. Blackmond DG (2004) Asymmetric autocatalysis and its implications for the origin of homochirality. Proc Natl Acad Sci U S A 101:5732–5736

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Bols M, Skrydstrup T (1995) Silicon-tethered reactions. Chem Rev 95:1253–1277

    CAS  Article  Google Scholar 

  6. Cafferty BJ, Musetti C, Kim K, Horowitz ED, Krishnamurthy R, Hud NV (2016) Chem Commun 52:5436

    CAS  Article  Google Scholar 

  7. Cairns-Smith AG, Hartman H (1987) Clay minerals and the origin of life. Cambridge University Press, UK

    Google Scholar 

  8. Carey MF, Peterson CL, Smale ST (2009) Chromatin immunoprecipitation (ChIP). Cold Spring Harb Protoc 4:1–8

    Google Scholar 

  9. Chitale S, Derasp JS, Hussain B, Tanveer K, Beauchemin AM (2016) Carbohydrates as efficient catalysts for the hydration of α-amino nitriles. Chem Commun 52:13147–13150

    CAS  Article  Google Scholar 

  10. Cleaves HJ II (2008) The prebiotic geochemistry of formaldehyde. Precambrian Res 164:111–118

    CAS  Article  Google Scholar 

  11. Cleaves HJ II, Scott AM, Hill FC, Leszczynski J, Sahai N, Hazen R (2012) Mineral-organic interfacial processes: potential roles in the origins of life. Chem Soc Rev 41:5502–5525

    CAS  Article  PubMed  Google Scholar 

  12. Diederich F, Stang PJ (2000) Templated organic synthesis. Wiley-VCH, Chichester

    Google Scholar 

  13. Dobson CM, Ellison GB, Tuck AF, Vaida V (2000) Atmospheric aerosols as prebiotic chemical reactors. Proc Natl Acad Sci USA 97:11864–11868

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Donaldson DJ, Tervahattu H, Tuck AF, Vaida V (2004) Organic aerosols and the origin of life: an hypothesis. Orig Life Evol Biosph 24:57–67

    Article  Google Scholar 

  15. Dunky M (1998) Urea-formaldehyde (UF) adhesive resins for wood. Int J Adhes Adhes 18:95–107

    CAS  Article  Google Scholar 

  16. Fensterbank L, Malacria M, Sieburth SM (1997) Intramolecular reactions of temporarily silicon-tethered molecules. Synthesis 8:813–854

    Article  Google Scholar 

  17. Fratzke ARJ (1985) Kinetic analysis of the dimerization and disproportionation of aqueous glyoxal. Iowa State University, Dissertation

    Google Scholar 

  18. Gauthier DR Jr, Zandi KS, Shea KJ (1998) Disposable tethers in synthetic organic chemistry. Tetrahedron 54:2289–2338

    CAS  Article  Google Scholar 

  19. Guimond N, MacDonald MJ, Lemieux V, Beauchemin AM (2012) Catalysis through temporary intramolecularity: mechanistic investigations on aldehyde-catalyzed cope-type hydroamination lead to the discovery of a more efficient tethering catalyst. J Am Chem Soc 134:16571–16577

  20. Hesp CR, MacDonald MJ, Zahedi MM, Bilodeau DA, Zhao S, Pesant M, Beauchemin AM (2015) Formaldehyde as tethering organocatalyst: highly diastereoselective hydroaminations of allylic amines. Org Lett 17:5136–5139

  21. Jain SS, Anet FAL, Stahle CJ, Hud NV (2004) Enzymatic behavior by intercalating molecules in a template-directed ligation reaction. Angew Chem Int Ed 43:2004–2008

    CAS  Article  Google Scholar 

  22. Karmakar S, Harcourt EM, Hewings DS, Lovejoy AF, Kurtz DM, Ehrenschwender T, Barandun LJ, Roost C, Alizadeh AA, Kool ET (2015) Organocatalytic removal of formaldehyde adducts from RNA and DNA bases. Nat Chem 7:752–758

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Kua J, Galloway MM, Millage KD, Avila JE, De Haan DO (2013) Glycolaldehyde monomer and oligomer equilibria in aqueous solution: comparing computational chemistry and NMR data. J Phys Chem 117:2997–3008

    CAS  Article  Google Scholar 

  24. Lahav N, Chang S (1976) The possible role of solid surface area in condensation reactions during chemical evolution: reevaluation. J Mol Evol 8:357–380

    CAS  Article  PubMed  Google Scholar 

  25. Lahav N, White D, Chang S (1978) Peptide formation in the prebiotic era: thermal condensation of glycine in fluctuating clay environments. Science 201:67–69

    CAS  Article  PubMed  Google Scholar 

  26. MacDonald MJ, Schipper DJ, Ng PJ, Moran J, Beauchemin AM (2011) A catalytic tethering strategy: simple adeldehyes catalyze intermolecular alkene hydroaminations. J Am Chem Soc 133:20100–20103

    CAS  Article  PubMed  Google Scholar 

  27. MacDonald MJ, Hesp CR, Schipper DJ, Pesant M, Beauchemin AM (2013) Highly enantioselective intermolecular hydroamination of allylic amines with chiral aldehydes as tethering catalysts. Chem Eur J 19:2597–2601

    CAS  Article  PubMed  Google Scholar 

  28. Mayer C, Schreiber U, Dávila MJ (2015) Periodic vesicle formation in tectonic fault zones—an ideal scenario for molecular evolution. Orig Life Evol Biosph 45:139–148

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Menor-Salván C, Marín-Yaseli MR (2012) Prebiotic chemistry in eutectic solutions at the water–ice matrix. Chem Soc Rev 41:5404–5415

    Article  PubMed  Google Scholar 

  30. Miller SL (1953) A production of amino acids under possible primitive earth conditions. Science 117:528–529

    CAS  Article  PubMed  Google Scholar 

  31. Miyakawa S, Cleaves HJ II, Miller SL (2002) The cold origin of life: B. implications based on pyrimidines and purines produced from frozen ammonium cyanide solutions. Orig Life Evol Biosph 32:209–218

    CAS  Article  PubMed  Google Scholar 

  32. Nelson KE, Robertson MP, Levy M, Miller SL (2001) Concentration by evaporation and the prebiotic synthesis of cytosine. Orig Life Evol Biosphere 31:221–229

    CAS  Article  Google Scholar 

  33. Pascal R (2003) Catalysis through induced intramolecularity: what can be learned by mimicking enzymes with carbonyl compounds that covalently bind substrates? Eur J Org Chem 2003:1813–1824

    Article  Google Scholar 

  34. Poorey K, Viswanathan R, Carver MN, Karpova TS, Cirimotich SM, McNally JG, Bekiranov S, Auble DT (2013) Measuring chromatin interaction dynamics on the second time scale at single-copy genes. Science 342:369–372

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Ruiz-Bermejo M, Menor-Salván C, Osuna-Esteban S, Veintemillas-Verdaguer S (2007) Prebiotic microreactors: a synthesis of purines and dihydroxy compounds in aqueous aerosols. Orig Life Evol Biosph 37:123–142

    CAS  Article  PubMed  Google Scholar 

  36. Salthammer T, Mentese S, Marutzky R (2010) Formaldehyde in the indoor environment. Chem Rev 110:2536–2572

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Sanchez R, Ferris J, Orgel LE (1966) Conditions for purine synthesis: did prebiotic synthesis occur at low temperatures? Science 153:72–73

    CAS  Article  PubMed  Google Scholar 

  38. Schwartz AW, Goverde M (1982) Acceleartion of HCN oligomerization by formaldehyde and related compounds: implications for prebiotic syntheses. J Mol Evol 18:351–353

    CAS  Article  PubMed  Google Scholar 

  39. Shah DO (1972) The origin of membranes and related surface phenomena. In: Ponnamperuma C (ed) Exobiology, vol 23. North-Holland, Amsterdam, pp 235–265

    Google Scholar 

  40. Soai K, Shibata T, Morioka H, Choji K (1995) Asymmetric autocatalysis and amplification of enantiomeric excess of chiral molecule. Nature 378:767–768

    CAS  Article  Google Scholar 

  41. Sutherland BW, Toews J, Kast J (2008) Utility of formaldehyde cross-linking and mass spectrometry in the study of protein-protein intereactions. J Mass Spectrom 43:699–715

    CAS  Article  PubMed  Google Scholar 

  42. Taillades J, Beuzelin I, Garrel L, Tabacik V, Bied C, Commeyras A (1998) N-Carbamoyl-α-amino acids rather than free α-amino acids formation in the primitive hydrosphere: a novel proposal for the emergence of prebiotic peptides. Origins Life Evol Biosphere 28:61–77

  43. Tan KL (2011) Induced Intramolecularity: an effective strategy in catalysis. ACS Catal 1:877–886

    CAS  Article  Google Scholar 

  44. Tuck A (2002) The role of atmospheric aerosols in the origin of life. Surv Geophys 23:379–409

    Article  Google Scholar 

  45. Zhao S, Bilodeau E, Lemieux V, Beauchemin AM (2012) Hydrogen bonding directed intermolecular cope-type hydroamination of alkenes. Org Lett 14:5082–5085

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the University of Ottawa and the Natural Sciences and Engineering Research Council (NSERC) of Canada for generous financial support. M.P.J. thanks the Ontario Graduate Scholarship and M.P.J. and M.J.M. thanks NSERC for graduate scholarships. We also thank Dr. Claudia El Nachef for stimulating discussions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to André M. Beauchemin.

Ethics declarations

Competing Interest

The authors declare no competing financial interest.

Electronic supplementary material

ESM 1

(PDF 524 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jamshidi, M.P., MacDonald, M.J. & Beauchemin, A.M. On the Ability of Formaldehyde to Act as a Tethering Catalyst in Water. Orig Life Evol Biosph 47, 405–412 (2017). https://doi.org/10.1007/s11084-017-9538-1

Download citation

Keywords

  • Catalysis
  • Molecular evolution
  • Formaldehyde
  • Temporary intramolecularity
  • Low concentration issue
  • Prebiotic chemistry