Origins of Life and Evolution of Biospheres

, Volume 47, Issue 4, pp 405–412 | Cite as

On the Ability of Formaldehyde to Act as a Tethering Catalyst in Water

  • Mohammad P. Jamshidi
  • Melissa J. MacDonald
  • André M. BeaucheminEmail author
Prebiotic Chemistry


The low concentration issue is a fundamental challenge when it comes to prebiotic chemistry, as macromolecular systems need to be assembled via intermolecular reactions, and this is inherently difficult in dilute solutions. This is especially true when the reactions are challenging, and reactions that proceeded more rapidly could have dictated chemical evolution. Herein we establish that formaldehyde is capable of catalyzing, via temporary intramolecularity, a challenging reaction in water at low concentrations, thus providing an alternative to other approaches that can either lead to higher concentrations or higher effective molarities.


Catalysis Molecular evolution Formaldehyde Temporary intramolecularity Low concentration issue Prebiotic chemistry 



We thank the University of Ottawa and the Natural Sciences and Engineering Research Council (NSERC) of Canada for generous financial support. M.P.J. thanks the Ontario Graduate Scholarship and M.P.J. and M.J.M. thanks NSERC for graduate scholarships. We also thank Dr. Claudia El Nachef for stimulating discussions.

Compliance with Ethical Standards

Competing Interest

The authors declare no competing financial interest.

Supplementary material

11084_2017_9538_MOESM1_ESM.pdf (525 kb)
ESM 1 (PDF 524 kb)


  1. Bada JL (2004) How life began on earth: a status report. Earth Planet Sci Lett 226:1–15CrossRefGoogle Scholar
  2. Beaver MG, Langille NF, Cui S, Fang Y, Bio MM, Potter-Racine MS, Tan H, Hansen KB (2016) Crystallization-induced dynamic resolution of diarylmethylamine towards the synthesis of a potent TRPM8 inhibitor. Org Process Res Dev 20:1341–1346CrossRefGoogle Scholar
  3. Bernal JD (1949) The physical basis of life. Proc Phys Soc 62:597–617CrossRefGoogle Scholar
  4. Blackmond DG (2004) Asymmetric autocatalysis and its implications for the origin of homochirality. Proc Natl Acad Sci U S A 101:5732–5736CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bols M, Skrydstrup T (1995) Silicon-tethered reactions. Chem Rev 95:1253–1277CrossRefGoogle Scholar
  6. Cafferty BJ, Musetti C, Kim K, Horowitz ED, Krishnamurthy R, Hud NV (2016) Chem Commun 52:5436CrossRefGoogle Scholar
  7. Cairns-Smith AG, Hartman H (1987) Clay minerals and the origin of life. Cambridge University Press, UKGoogle Scholar
  8. Carey MF, Peterson CL, Smale ST (2009) Chromatin immunoprecipitation (ChIP). Cold Spring Harb Protoc 4:1–8Google Scholar
  9. Chitale S, Derasp JS, Hussain B, Tanveer K, Beauchemin AM (2016) Carbohydrates as efficient catalysts for the hydration of α-amino nitriles. Chem Commun 52:13147–13150CrossRefGoogle Scholar
  10. Cleaves HJ II (2008) The prebiotic geochemistry of formaldehyde. Precambrian Res 164:111–118CrossRefGoogle Scholar
  11. Cleaves HJ II, Scott AM, Hill FC, Leszczynski J, Sahai N, Hazen R (2012) Mineral-organic interfacial processes: potential roles in the origins of life. Chem Soc Rev 41:5502–5525CrossRefPubMedGoogle Scholar
  12. Diederich F, Stang PJ (2000) Templated organic synthesis. Wiley-VCH, ChichesterGoogle Scholar
  13. Dobson CM, Ellison GB, Tuck AF, Vaida V (2000) Atmospheric aerosols as prebiotic chemical reactors. Proc Natl Acad Sci USA 97:11864–11868CrossRefPubMedPubMedCentralGoogle Scholar
  14. Donaldson DJ, Tervahattu H, Tuck AF, Vaida V (2004) Organic aerosols and the origin of life: an hypothesis. Orig Life Evol Biosph 24:57–67CrossRefGoogle Scholar
  15. Dunky M (1998) Urea-formaldehyde (UF) adhesive resins for wood. Int J Adhes Adhes 18:95–107CrossRefGoogle Scholar
  16. Fensterbank L, Malacria M, Sieburth SM (1997) Intramolecular reactions of temporarily silicon-tethered molecules. Synthesis 8:813–854CrossRefGoogle Scholar
  17. Fratzke ARJ (1985) Kinetic analysis of the dimerization and disproportionation of aqueous glyoxal. Iowa State University, DissertationGoogle Scholar
  18. Gauthier DR Jr, Zandi KS, Shea KJ (1998) Disposable tethers in synthetic organic chemistry. Tetrahedron 54:2289–2338CrossRefGoogle Scholar
  19. Guimond N, MacDonald MJ, Lemieux V, Beauchemin AM (2012) Catalysis through temporary intramolecularity: mechanistic investigations on aldehyde-catalyzed cope-type hydroamination lead to the discovery of a more efficient tethering catalyst. J Am Chem Soc 134:16571–16577Google Scholar
  20. Hesp CR, MacDonald MJ, Zahedi MM, Bilodeau DA, Zhao S, Pesant M, Beauchemin AM (2015) Formaldehyde as tethering organocatalyst: highly diastereoselective hydroaminations of allylic amines. Org Lett 17:5136–5139Google Scholar
  21. Jain SS, Anet FAL, Stahle CJ, Hud NV (2004) Enzymatic behavior by intercalating molecules in a template-directed ligation reaction. Angew Chem Int Ed 43:2004–2008CrossRefGoogle Scholar
  22. Karmakar S, Harcourt EM, Hewings DS, Lovejoy AF, Kurtz DM, Ehrenschwender T, Barandun LJ, Roost C, Alizadeh AA, Kool ET (2015) Organocatalytic removal of formaldehyde adducts from RNA and DNA bases. Nat Chem 7:752–758CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kua J, Galloway MM, Millage KD, Avila JE, De Haan DO (2013) Glycolaldehyde monomer and oligomer equilibria in aqueous solution: comparing computational chemistry and NMR data. J Phys Chem 117:2997–3008CrossRefGoogle Scholar
  24. Lahav N, Chang S (1976) The possible role of solid surface area in condensation reactions during chemical evolution: reevaluation. J Mol Evol 8:357–380CrossRefPubMedGoogle Scholar
  25. Lahav N, White D, Chang S (1978) Peptide formation in the prebiotic era: thermal condensation of glycine in fluctuating clay environments. Science 201:67–69CrossRefPubMedGoogle Scholar
  26. MacDonald MJ, Schipper DJ, Ng PJ, Moran J, Beauchemin AM (2011) A catalytic tethering strategy: simple adeldehyes catalyze intermolecular alkene hydroaminations. J Am Chem Soc 133:20100–20103CrossRefPubMedGoogle Scholar
  27. MacDonald MJ, Hesp CR, Schipper DJ, Pesant M, Beauchemin AM (2013) Highly enantioselective intermolecular hydroamination of allylic amines with chiral aldehydes as tethering catalysts. Chem Eur J 19:2597–2601CrossRefPubMedGoogle Scholar
  28. Mayer C, Schreiber U, Dávila MJ (2015) Periodic vesicle formation in tectonic fault zones—an ideal scenario for molecular evolution. Orig Life Evol Biosph 45:139–148CrossRefPubMedPubMedCentralGoogle Scholar
  29. Menor-Salván C, Marín-Yaseli MR (2012) Prebiotic chemistry in eutectic solutions at the water–ice matrix. Chem Soc Rev 41:5404–5415CrossRefPubMedGoogle Scholar
  30. Miller SL (1953) A production of amino acids under possible primitive earth conditions. Science 117:528–529CrossRefPubMedGoogle Scholar
  31. Miyakawa S, Cleaves HJ II, Miller SL (2002) The cold origin of life: B. implications based on pyrimidines and purines produced from frozen ammonium cyanide solutions. Orig Life Evol Biosph 32:209–218CrossRefPubMedGoogle Scholar
  32. Nelson KE, Robertson MP, Levy M, Miller SL (2001) Concentration by evaporation and the prebiotic synthesis of cytosine. Orig Life Evol Biosphere 31:221–229CrossRefGoogle Scholar
  33. Pascal R (2003) Catalysis through induced intramolecularity: what can be learned by mimicking enzymes with carbonyl compounds that covalently bind substrates? Eur J Org Chem 2003:1813–1824CrossRefGoogle Scholar
  34. Poorey K, Viswanathan R, Carver MN, Karpova TS, Cirimotich SM, McNally JG, Bekiranov S, Auble DT (2013) Measuring chromatin interaction dynamics on the second time scale at single-copy genes. Science 342:369–372CrossRefPubMedPubMedCentralGoogle Scholar
  35. Ruiz-Bermejo M, Menor-Salván C, Osuna-Esteban S, Veintemillas-Verdaguer S (2007) Prebiotic microreactors: a synthesis of purines and dihydroxy compounds in aqueous aerosols. Orig Life Evol Biosph 37:123–142CrossRefPubMedGoogle Scholar
  36. Salthammer T, Mentese S, Marutzky R (2010) Formaldehyde in the indoor environment. Chem Rev 110:2536–2572CrossRefPubMedPubMedCentralGoogle Scholar
  37. Sanchez R, Ferris J, Orgel LE (1966) Conditions for purine synthesis: did prebiotic synthesis occur at low temperatures? Science 153:72–73CrossRefPubMedGoogle Scholar
  38. Schwartz AW, Goverde M (1982) Acceleartion of HCN oligomerization by formaldehyde and related compounds: implications for prebiotic syntheses. J Mol Evol 18:351–353CrossRefPubMedGoogle Scholar
  39. Shah DO (1972) The origin of membranes and related surface phenomena. In: Ponnamperuma C (ed) Exobiology, vol 23. North-Holland, Amsterdam, pp 235–265Google Scholar
  40. Soai K, Shibata T, Morioka H, Choji K (1995) Asymmetric autocatalysis and amplification of enantiomeric excess of chiral molecule. Nature 378:767–768CrossRefGoogle Scholar
  41. Sutherland BW, Toews J, Kast J (2008) Utility of formaldehyde cross-linking and mass spectrometry in the study of protein-protein intereactions. J Mass Spectrom 43:699–715CrossRefPubMedGoogle Scholar
  42. Taillades J, Beuzelin I, Garrel L, Tabacik V, Bied C, Commeyras A (1998) N-Carbamoyl-α-amino acids rather than free α-amino acids formation in the primitive hydrosphere: a novel proposal for the emergence of prebiotic peptides. Origins Life Evol Biosphere 28:61–77Google Scholar
  43. Tan KL (2011) Induced Intramolecularity: an effective strategy in catalysis. ACS Catal 1:877–886CrossRefGoogle Scholar
  44. Tuck A (2002) The role of atmospheric aerosols in the origin of life. Surv Geophys 23:379–409CrossRefGoogle Scholar
  45. Zhao S, Bilodeau E, Lemieux V, Beauchemin AM (2012) Hydrogen bonding directed intermolecular cope-type hydroamination of alkenes. Org Lett 14:5082–5085CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Mohammad P. Jamshidi
    • 1
  • Melissa J. MacDonald
    • 1
  • André M. Beauchemin
    • 1
    Email author
  1. 1.Center for Catalysis Research and Innovation, Department of Chemistry and Biomolecular SciencesUniversity of OttawaOttawaCanada

Personalised recommendations