Skip to main content

Carbonaceous Chondrite Meteorites: the Chronicle of a Potential Evolutionary Path between Stars and Life

Abstract

The biogenic elements, H, C, N, O, P and S, have a long cosmic history, whose evolution can still be observed in diverse locales of the known universe, from interstellar clouds of gas and dust, to pre-stellar cores, nebulas, protoplanetary discs, planets and planetesimals. The best analytical window into this cosmochemical evolution as it neared Earth has been provided so far by the small bodies of the Solar System, some of which were not significantly altered by the high gravitational pressures and temperatures that accompanied the formation of larger planets and may carry a pristine record of early nebular chemistry. Asteroids have delivered such records, as their fragments reach the Earth frequently and become available for laboratory analyses. The Carbonaceous Chondrite meteorites (CC) are a group of such fragments with the further distinction of containing abundant organic materials with structures as diverse as kerogen-like macromolecules and simpler compounds with identical counterparts in Earth’s biosphere. All have revealed a lineage to cosmochemical synthetic regimes. Several CC show that asteroids underwent aqueous alteration of their minerals or rock metamorphism but may yet yield clues to the reactivity of organic compounds during parent-body processes, on asteroids as well as larger ocean worlds and planets. Whether the exogenous delivery by meteorites held an advantage in Earth’s molecular evolution remains an open question as many others regarding the origins of life are. Nonetheless, the natural samples of meteorites allow exploring the physical and chemical processes that might have led to a selected chemical pool amenable to the onset of life.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3
Scheme 3
Scheme 4
Fig. 4

Notes

  1. Made up respectively: of alkyl chains, one or more benzene rings and other atoms besides C and H.

  2. According to chemical nomenclature, asymmetric induction describes the preferential formation of one enantiomer over the other in a chemical reaction resulting from the influence of a chiral feature present in the substrate, reagent, catalyst or environment.

References

  • Alexander CMO’D, Newsome SD, Fogel ML, Nittler LR, Busemann GD, Cody GD (2010) Deuterium enrichment in chondritic macromolecular material- implications for the origin and evolution of organics, water and asteroids. Geochim Cosmochim Acta 74:4417–4437

    CAS  Article  Google Scholar 

  • Alexander CMO’D, Cody GD, Kebukawa Y, Bowden R, Fogel ML, Kilcoyne ALD, Nittler LR, Herd CDK (2014) Elemental, isotopic and structural changes in Tagish Lake insoluble organic matter produced by parent body processes. Meteorit Planet Sci 49:503–525

    CAS  Article  Google Scholar 

  • Bose M, Zega TJ, Williams P (2014) Assessment of alteration processes on circumstellar and interstellar grains in queen Alexandra range 97416. Earth Planet Sci Lett 399:128–138

    CAS  Article  Google Scholar 

  • Bunch TE, Chang S (1980) Carbonaceous chondrites. 2. Carbonaceous chondrites phyllosilicates and light elements geochemistry as indicators of parent-body processes and surface conditions. Geochim Cosmochim Acta 44:1543–1577

    CAS  Article  Google Scholar 

  • Campins H, Hargrove K, Pinilla-Alonso N, Howell ES, Kelley MS, Licandro J, Mothe-Diniz T, Fernández Y, Ziffer J (2010) Water ice and organics on the surface of asteroid 24 Themis. Nature 464:1320–1321

    CAS  Article  PubMed  Google Scholar 

  • Chan QHS, Zolenky ME, Martinez J (2015) Scaffolds of asymmetric organic compounds-Magnetite plaquettes. Lunar Planetary Science Conference 46 #1150 (abstr)

  • Chan QHS, Zolenky ME, Martinez JE, Tsuchiyama A, Miyake A (2016) Magnetite plaquettes are natural asymmetric materials in meteorites. Am Mineral 101:2041–2050

    Article  Google Scholar 

  • Cody GD, Heying E, Alexander CM, Nittler LR, Kilcoyne ADL, Sanford SA, Stroud R (2011) Establishing a molecular relationship between chondritic and cometary organic solids. Proc Natl Acad Sci USA 108:19171–19176

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Cooper G, Rios AC (2016) Enantiomer excesses of rare and common sugar derivatives in carbonaceous meteorites. Proc Natl Acad Sci USA. doi:10.1073/pnas.1603030113

    Google Scholar 

  • Cronin JR, Chang S (1993) Organic matter in meteorites: molecular and isotopic analyses of the Murchison meteorite. In: Greenberg JM et al (eds) The chemistry of Life’s origins. Kluwer, Deventer, pp 209–258

    Chapter  Google Scholar 

  • Cronin JR, Pizzarello S (1997) Enantiomeric excesses in meteoritic amino acids. Science 275:951–955

    CAS  Article  PubMed  Google Scholar 

  • Epstein S, Krishnamurthy RV, Cronin JR, Pizzarello S, Yuen GU (1987) Unusual stable isotope ratios in amino acid and carboxylic acid extracts from the Murchison meteorite. Nature 326:477–479

    CAS  Article  PubMed  Google Scholar 

  • Ferris JP, Nicodem DE (1972) Ammonia photolysis and the role of ammonia in chemical evolution. Nature 238:268–269

    CAS  Article  Google Scholar 

  • Hollis JM, Pedelty JA, Snyder LE et al (2003) A sensitive very large array search for small scale glycine emission toward OMC-1. Ap J 588:353–359

    CAS  Article  Google Scholar 

  • Hsieh HH, Jewitt DC (2006) A population of comets in the main asteroid belt. Science 312:561–563

    CAS  Article  PubMed  Google Scholar 

  • Hua X, Buseck PR (1998) Unusual form of magnetite in the Orgueil carbonaceous chondrite. Meteorit Planet Sci 33:A215–A220

    Article  Google Scholar 

  • Irvine WM, Hjalmarson A (1984) The chemical composition of the interstellar molecular clouds. OLEB 14:15–23

  • Kebukawa Y, Cody GD (2015) A kinetic study of the formation of organic solids from formaldehyde: implications for the origin of extraterrestrial organic solids in primitive solar system objects. Icarus 248:412–423

    CAS  Article  Google Scholar 

  • Kuan YJ, Charnley SB, Huang HC, Tseng WL, Kisiel Z (2003) Interstellar glycine. Ap J 593(2):848–467

    CAS  Article  Google Scholar 

  • Kvenvolden K, Lawless J, Pering K, Peterson E, Flores J, Ponnamperuma C, Kaplan JR, Moore C (1970) Evidence of extraterrestrial amino acids and hydrocarbons in the Murchison meteorite. Nature 228:923–926

    CAS  Article  PubMed  Google Scholar 

  • Kwok S, Zhang Y (2011) Mixed aromatic-aliphatic organic nanoparticles as carriers of unidentified infrared emission features. Nature 479(7371):80–83

    Article  PubMed  Google Scholar 

  • Le Guillou C, Brearley A (2014) Relationships between organics, water and early stages of aqueous alteration in the pristine CR3.0 chondrite MET 00426. Geochim Cosmochim Acta 131:344–367

    CAS  Article  Google Scholar 

  • Le Guillou C, Bernard S, Brearley AJ, Remusat L (2014) Evolution of organic matter in Orgueil, Murchison and Renazzo during parent body aqueous alteration: in situ measurements. Geochim Cosmochim Acta 131:368–392

    CAS  Article  Google Scholar 

  • Le Guillou C, Changela HG, Brearley AJ (2015) Widespread oxidized and hydrated amorphous silicates in CR chondrites matrices: implications for alteration condition and H2 degassing of asteroids. Earth Planet Sci Lett 420:162–173

    CAS  Article  Google Scholar 

  • Martins Z (2011) Organic chemistry of carbonaceous meteorites. Elements 7:35–40

    CAS  Article  Google Scholar 

  • Nishino H, Kosaka A, Hembury GA, Matsushima K, Inoue Y (2002) The pH dependence of the anisotropy factors of essential amino acids. J Chem Soc Perkin Trans 2(3):582–590

    Article  Google Scholar 

  • Peltzer ET, Bada JL (1978) α-Hydroxycarboxylic acids in the Murchison meteorite. Nature 272:443–444

    CAS  Article  Google Scholar 

  • Peltzer ET, Bada JL, Schlesinger G, Miller SL (1984) The chemical conditions on the parent body of the Murchison meteorite: some conclusions based on amino, hydroxy and dicarboxylic acids. Adv Space Res 4:69–74

    CAS  Article  PubMed  Google Scholar 

  • Piani L, Robert F, Remusat L (2015) Micron-scale D/H heterogeneity in chondrite matrices: a signature of the pristine solar system water? Earth Planet Sci Lett 415:154–164

    CAS  Article  Google Scholar 

  • Pizzarello S (2016)Identifying chiral molecules and their enantiomeric excesses in extraterrestrial samples: An expeerimental journey. 2016 Israel Journal of Chemistry doi:10.1002/ijch.201600039

  • Pizzarello S, Bose M (2015) The path of reduced nitrogen towards early earth: the cosmic trail and its solar shortcuts. Asp J 814:107–113

    Google Scholar 

  • Pizzarello S, Groy TL (2011) Molecular asymmetry in extraterrestrial organic chemistry: an analytical perspective. Geochim Cosmochim Acta 75:645–656

    CAS  Article  Google Scholar 

  • Pizzarello S, Williams LB (2012) Ammonia in the early solar system: an account from carbonaceous meteorites. Ap J 749:161–166

    Article  Google Scholar 

  • Pizzarello S, Yarnes C (2016) Enantiomeric excesses of chiral amines in ammonia-rich carbonaceous meteorites. Earth Planet Sci Lett 443:176–184

    CAS  Article  Google Scholar 

  • Pizzarello S, Zolensky M, Turk KA (2003) Nonracemic isovaline in the Murchison meteorite: chiral distribution and mineral association. Geochim Cosmochim Acta 67:1589–1595

    CAS  Article  Google Scholar 

  • Pizzarello S, Cooper GW, Flynn GJ (2006) In: Lauretta DS and McSween Jr HY (eds) The nature and distribution of the organic material in carbonaceous chondrites and interplanetary dust particles. Meteorites and the early solar system II. University of Arizona Press, Tucson, pp 625–651

  • Pizzarello S, Huang Y, Alexandre MDR (2008) Molecular asymmetry in extraterrestrial chemistry: insights from a pristine meteorite. Proc Natl Acad Sci USA 105:7300–7304

    Article  Google Scholar 

  • Pizzarello S, Wang Y, Chaban GM (2010) A comparative study of the hydroxy acids from the Murchison, GRA 95229 and LAP 02342 meteorites. Geochim Cosmochim Acta 74:6206–6217

    CAS  Article  Google Scholar 

  • Pizzarello S, Williams BL, Lehman J, Holland PH, Yarger JL (2011) Abundant ammonia in primitive asteroids and the case for a possible exobiology. Proc Natl Acad Sci USA 108:4303–4306

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Pizzarello S, Schrader DL, Monroe AA, Lauretta DS (2012) Enantiomeric excesses in primitive meteorites and the diverse effects of water in chemical evolution. Proc Natl Acad Sci USA 109:11949–11954

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Pizzarello S, Davidowski S, Holland GP, Williams LB (2013) Processing of meteoritic organic materials as a possible analogu of molecular evolution in planetary environments. Proc Natl Acad Sci USA 110:15614–15619

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Pizzarello S, Huang Y, Becker L, Poreda RJ, Nieman RA, Cooper G, Williams M (2001) The organic content of the Tagish Lake meteorite. Science 293(5538):2236-2239

  • Remusat L, Palhol F, Robert F, Derenne S, France-Lanord C (2006) Enrichment of deuterium in insoluble organic matter from primitive meteorites: a solar system origin? Meteorit Planet Sci 243:15–25

    CAS  Article  Google Scholar 

  • Rivkin AS, Emery JP (2010) Detection of ice and organics on an asteroidal surface. Nature 464:1322–1323

    CAS  Article  PubMed  Google Scholar 

  • Rubenstein E, Bonner WA, Noyes HP, Brown GS (1983) Supernovae and life. Nature 306:118

    Article  Google Scholar 

  • Schulte M, Shock E (1995) Thermodynamics of Strecker synthesis in hydrothermal systems. Origins Life Evol Biosph 25:161–173

    CAS  Article  Google Scholar 

  • Schutte WA, Allamandola LJ, Sandford SA (1993) An experimental study of organic molecules produced in cometary and interstellar ice analogues by thermal formaldehyde reactions. Icarus 104:118–137

    CAS  Article  PubMed  Google Scholar 

  • Shipp J, Gould IR, Shock EL, Williams LB, Hartnett HE (2014) Sphalerite is a geochemical catalyst for carbon-hydrogen bond activation. Proc Natl Acad Sci USA 111:11642–11645

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Strom RG, Malhotra R, Takashi I, Yoshida F, Kring DA (2005) The origin of planetary impactors in the early solar system. Science 309:1847–1850

    CAS  Article  PubMed  Google Scholar 

  • The Royal Swedish Academy of Sciences (2001) Redrawn from the web-adapted poster printed by the Academy in honor of the Nobel price in Chemistry 2001. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2001/illpres/catalyst.html

  • Vollmer C, Kepaptsoglu D, Leitner J, Busemann H, Spring NH, Rmasse QM, Hoppe P, Nittler LR (2014) Fluid-induced organic synthesis in the solar nebula recorded in extraterrestrial dust from meteorites. Proc Natl Acad Sci USA 111:15338–15343

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Yabuta H, Williams LB, Cody GD, Alexander CMO’D, Pizzarello S (2007) The insoluble carbonaceous material of CM chondrites: a possible source of discrete organic compounds under hydrothermal conditions. Meteorit Planet Sci 42:37–48

    CAS  Article  Google Scholar 

  • Yang Z, Lorance ED, Bockisch C, Williams LB, Hartnett HE, Shock EL, Gould IR (2014) Hydrothermal photochemistry as a mechanistic tool in organic geochemistry: the chemistry of dibenzyl ketone. J Org Chem 79:7861–7871

    CAS  Article  PubMed  Google Scholar 

  • Yang Z, Hartnett HE, Shock EL, Gould IR (2015) Organic oxidations using geomimicry. J Org Chem 80:12159–12165

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

SP is grateful for the many years of funding from the NASA Astrobiology and Exobiology division and the current NASA support under Agreement No. NNX15AD94G for the program “Earths in Other Solar Systems”; ES appreciates financial support from NASA (NNX15AH73G and NNX16AO82G) and the Deep Carbon Observatory. Both authors wish to thank an anonymous reviewer for corrections, comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Pizzarello.

Additional information

Dedicated to Jim Ferris

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pizzarello, S., Shock, E. Carbonaceous Chondrite Meteorites: the Chronicle of a Potential Evolutionary Path between Stars and Life. Orig Life Evol Biosph 47, 249–260 (2017). https://doi.org/10.1007/s11084-016-9530-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11084-016-9530-1

Keywords

  • Biogenic elements
  • A-biotic organic chemistry
  • Meteorites
  • Chiral asymmetry