Advertisement

Origins of Life and Evolution of Biospheres

, Volume 47, Issue 4, pp 427–452 | Cite as

The Influence of Mineral Matrices on the Thermal Behavior of Glycine

  • Punam Dalai
  • Hannes Lukas Pleyer
  • Henry Strasdeit
  • Stefan Fox
Prebiotic Chemistry

Abstract

On the Hadean–Early Archean Earth, the first islands must have provided hot and dry environments for abiotically formed organic molecules. The heat sources, mainly volcanism and meteorite impacts, were also available on Mars during the Noachian period. In recent work simulating this scenario, we have shown that neat glycine forms a black, sparingly water-soluble polymer (“thermomelanoid”) when dry-heated at 200 °C under pure nitrogen. The present study explores whether relevant minerals and mineral mixtures can change this thermal behavior. Most experiments were conducted at 200 or 250 °C for 2 or 7 days. The mineral matrices used were phyllosilicates (Ca-montmorillonites SAz-1 and STx-1, Na-montmorillonite SAz-1-Na, nontronite NAu-1, kaolinite KGa-1), salts (NaCl, NaCl-KCl, CaCl2, artificial sea salt, gypsum, magnesite), picritic basalt, and three Martian regolith simulants (P-MRS, S-MRS, JSC Mars-1A). The main analytical method employed was high-performance liquid chromatography (HPLC). Glycine intercalated in SAz-1 and SAz-1-Na was well protected against thermomelanoid formation and sublimation at 200 °C: after 2 days, 95 and 79 %, respectively, had either survived unaltered or been transformed into the cyclic dipeptide (DKP) and linear peptides up to Gly6. The glycine survival rate followed the order SAz-1 > SAz-1-Na > STx-1 ≈ NAu-1 > KGa-1. Very good protection was also provided by artificial sea salt (84 % unaltered glycine after 200 °C for 7 days). P-MRS promoted the condensation up to Gly6, consistent with its high phyllosilicate content. The remaining matrices were less effective in preserving glycine as such or as peptides.

Keywords

Clay minerals Dry heating Early Earth and Mars Evaporites Glycine homopeptides Martian regolith simulants 

Notes

Acknowledgments

We thank Claudia Görgen, Sonja Ringer, Melanie Wagner, and the late Petra Guni for technical assistance. The authors are grateful to Thomas Staudacher (Observatoire volcanologique du Piton de la Fournaise) for providing the picritic basalt and to Dr. Manfred Martin (Regierungspräsidium Freiburg; Landesamt für Geologie, Rohstoffe und Bergbau) for its elemental analysis. We also thank Dr. Jean-Pierre Paul de Vera (DLR Institute of Planetary Research, Berlin) for providing samples of P-MRS and S-MRS. HLP is supported by an LGFG doctoral fellowship from the State of Baden-Württemberg.

References

  1. Allen CC, Morris RV, Lindstrom DJ, Lindstrom MM, Lockwood JP (1997) JSC Mars-1: a Martian regolith simulant. Presented at the 28th lunar and planetary science conference, Houston, Texas, USA, paper 1797.pdfGoogle Scholar
  2. Ambujam K, Selvakumar S, Anand DP, Mohamed G, Sagayaraj P (2006) Crystal growth, optical, mechanical and electrical properties of organic NLO material γ-glycine. Cryst Res Technol 41:671–677CrossRefGoogle Scholar
  3. Arndt NT, Nisbet EG (2012) Processes on the young Earth and the habitats of early life. Annu Rev Earth Planet Sci 40:521–549CrossRefGoogle Scholar
  4. Bandfield JL, Glotch TD, Christensen PR (2003) Spectroscopic identification of carbonate minerals in the Martian dust. Science 301:1085–1087CrossRefGoogle Scholar
  5. Basiuk VA, Navarro-González R (1996) Possible role of volcanic ash-gas clouds in the Earth’s prebiotic chemistry. Orig Life Evol Biosph 26:173–194PubMedCrossRefGoogle Scholar
  6. Benincasa E, Brigatti MF, Lugli C, Medici L, Poppi L (2000) Interaction between glycine and Na-, Ca- and Cu-rich smectites. Clay Miner 35:635–641CrossRefGoogle Scholar
  7. Bernal JD (1949) The physical basis of life. Proc Phys Soc B 62:597–618CrossRefGoogle Scholar
  8. Bertrand M, van der Gaast S, Vilas F, Hörz F, Haynes G, Chabin A, Brack A, Westall F (2009) The fate of amino acids during simulated meteoritic impact. Astrobiology 9:943–951PubMedCrossRefGoogle Scholar
  9. Best MG (2003) Igneous and metamorphic petrology, 2nd edn. Blackwell, Malden, p 37Google Scholar
  10. Bhushan R, Brückner H (2004) Marfey’s reagent for chiral amino acid analysis: a review. Amino Acids 27:231–247PubMedCrossRefGoogle Scholar
  11. Bibring J-P, Langevin Y, Gendrin A, Gondet B, Poulet F, Berthé M, Soufflot A, Arvidson R, Mangold N, Mustard J, Drossart P, the OMEGA team (2005) Mars surface diversity as revealed by the OMEGA/Mars Express observations. Science 307:1576–1581PubMedCrossRefGoogle Scholar
  12. Bibring J-P, Langevin Y, Mustard JF, Poulet F, Arvidson R, Gendrin A, Gondet B, Mangold N, Pinet P, Forget F, the OMEGA team (2006) Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data. Science 312:400–404PubMedCrossRefGoogle Scholar
  13. Biron J-P, Pascal R (2004) Amino acid N-carboxyanhydrides: activated peptide monomers behaving as phosphate-activating agents in aqueous solution. J Am Chem Soc 126:9198–9199PubMedCrossRefGoogle Scholar
  14. Biron J-P, Parkes AL, Pascal R, Sutherland JD (2005) Expeditious, potentially primordial, aminoacylation of nucleotides. Angew Chem Int Ed 44:6731–6734CrossRefGoogle Scholar
  15. Bishop JL, Noe Dobrea EZ, McKeown NK, Parente M, Ehlmann BL, Michalski JR, Milliken RE, Poulet F, Swayze GA, Mustard JF, Murchie SL, Bibring J-P (2008) Phyllosilicate diversity and past aqueous activity revealed at Mawrth Vallis, Mars. Science 321:830–833PubMedCrossRefGoogle Scholar
  16. Borden D, Giese RF (2001) Baseline studies of the Clay Minerals Society source clays: cation exchange capacity measurements by the ammonia-electrode method. Clays Clay Miner 49:444–445CrossRefGoogle Scholar
  17. Böttger U, de Vera J-P, Fritz J, Weber I, Hübers H-W, Schulze-Makuch D (2012) Optimizing the detection of carotene in cyanobacteria in a Martian regolith analogue with a Raman spectrometer for the ExoMars mission. Planet Space Sci 60:356–362CrossRefGoogle Scholar
  18. Brack A (2013) Clay minerals and the origin of life. In: Bergaya F, Lagaly G (eds) Handbook of clay science, part A: fundamentals, 2nd edn. Elsevier, Amsterdam, pp 507–521CrossRefGoogle Scholar
  19. Brandenburg K (2015) Diamond – Crystal and molecular structure visualization, version 4.0.5, Crystal Impact, Bonn, GermanyGoogle Scholar
  20. Buick R, Dunlop JSR (1990) Evaporitic sediments of Early Archaean age from the Warrawoona Group, North Pole, Western Australia. Sedimentology 37:247–277CrossRefGoogle Scholar
  21. Buick R, Thornett JR, McNaughton NJ, Smith JB, Barley ME, Savage M (1995) Record of emergent continental crust ~3.5 billion years ago in the Pilbara craton of Australia. Nature 375:574–577CrossRefGoogle Scholar
  22. Bujdák J, Rode BM (1996) The effect of smectite composition on the catalysis of peptide bond formation. J Mol Evol 43:326–333PubMedCrossRefGoogle Scholar
  23. Bujdák J, Rode BM (1999) Silica, alumina and clay catalyzed peptide bond formation: enhanced efficiency of alumina catalyst. Orig Life Evol Biosph 29:451–461PubMedCrossRefGoogle Scholar
  24. Casale A, De Robertis A, De Stefano C, Gianguzza A, Patanè G, Rigano C, Sammartano S (1995) Thermodynamic parameters for the formation of glycine complexes with magnesium(II), calcium(II), lead(II), manganese(II), cobalt(II), nickel(II), zinc(II) and cadmium(II) at different temperatures and ionic strengths, with particular reference to natural fluid conditions. Thermochim Acta 255:109–141CrossRefGoogle Scholar
  25. Chevrier V, Mathé PE (2007) Mineralogy and evolution of the surface of Mars: a review. Planet Space Sci 55:289–314CrossRefGoogle Scholar
  26. Cleaves HJ, Aubrey AD, Bada JL (2009) An evaluation of the critical parameters for abiotic peptide synthesis in submarine hydrothermal systems. Orig Life Evol Biosph 39:109–126PubMedCrossRefGoogle Scholar
  27. Cleaves HJ II, Scott AM, Hill FC, Leszczynski J, Sahai N, Hazen R (2012) Mineral–organic interfacial processes: potential roles in the origins of life. Chem Soc Rev 41:5502–5525PubMedCrossRefGoogle Scholar
  28. Cloutis EA, Grasby SE, Last WM, Leveille R, Osinski GR, Sherriff BL (2010) Spectral reflectance properties of carbonates from terrestrial analogue environments: implications for Mars. Planet Space Sci 58:522–537CrossRefGoogle Scholar
  29. Córdoba-Jabonero C, Lara LM, Mancho AM, Márquez A, Rodrigo R (2003) Solar ultraviolet transfer in the Martian atmosphere: biological and geological implications. Planet Space Sci 51:399–410CrossRefGoogle Scholar
  30. Dalai P (2013) Thermal behavior of amino acids in inorganic matrices: relevance for chemical evolution. Doctoral thesis. University of Hohenheim, 139 ppGoogle Scholar
  31. Dalai P, Strasdeit H (2009) The Influence of a clay mineral on the behavior of glycine at 200 degrees Celsius. Orig Life Evol Biosph 39:47–48Google Scholar
  32. Deamer DW (2004) Prebiotic amphiphilic compounds: self-assembly and properties of early membrane structures. In: Seckbach J (ed) Origins: genesis, evolution and diversity of life. Kluwer, Dordrecht, pp 75–89Google Scholar
  33. Eberl DD (1984) Clay mineral formation and transformation in rocks and soils. Phil Trans R Soc Lond A 311:241–257CrossRefGoogle Scholar
  34. Ehlmann BL, Mustard JF, Murchie SL, Poulet F, Bishop JL, Brown AJ, Calvin WM, Clark RN, Des Marais DJ, Milliken RE, Roach LH, Roush TL, Swayze GA, Wray JJ (2008) Orbital identification of carbonate-bearing rocks on Mars. Science 322:1828–1832PubMedCrossRefGoogle Scholar
  35. Ferrari ES, Davey RJ, Cross WI, Gillon AL, Towler CS (2003) Crystallization in polymorphic systems: the solution-mediated transformation of β to α glycine. Cryst Growth Des 3:53–60CrossRefGoogle Scholar
  36. Fishbaugh KE, Poulet F, Chevrier V, Langevin Y, Bibring J-P (2007) On the origin of gypsum in the Mars north polar region. J Geophys Res 112:1–17CrossRefGoogle Scholar
  37. Fox S, Strasdeit H (2013) Possible prebiotic origin on volcanic islands of oligopyrrole-type photopigments and electron transfer cofactors. Astrobiology 13:578–595PubMedCrossRefGoogle Scholar
  38. Fox S, Dalai P, Lambert J-F, Strasdeit H (2015) Hypercondensation of an amino acid: synthesis and characterization of a black glycine polymer. Chem Eur J 21:8897–8904PubMedCrossRefGoogle Scholar
  39. Fuchida S, Masuda H, Shinoda K (2014) Peptide formation mechanism on montmorillonite under thermal conditions. Orig Life Evol Biosph 44:13–28PubMedCrossRefGoogle Scholar
  40. Fujio H, Noma Y, Amano T (1959) Analytical aspects of the precipitin reaction using some artificial antigens. Biken J 2:35–49, CAplus accession number: 1960:131194Google Scholar
  41. Futamura Y, Fujioka K, Yamamoto K (2008) Hydrothermal treatment of glycine and adiabatic expansion cooling: implications for prebiotic synthesis of biopolymers. J Mater Sci 43:2442–2446CrossRefGoogle Scholar
  42. Galán E, Ferrell RE (2013) Genesis of clay minerals. In: Bergaya F, Lagaly G (eds) Handbook of clay science, part A: fundamentals, 2nd edn. Elsevier, Amsterdam, pp 83–126CrossRefGoogle Scholar
  43. Gendrin A, Mangold N, Bibring J-P, Langevin Y, Gondet B, Poulet F, Bonello G, Quantin C, Mustard J, Arvidson R, LeMouélic S (2005) Sulfates in Martian layered terrains: the OMEGA/Mars Express view. Science 307:1587–1591PubMedCrossRefGoogle Scholar
  44. Georgelin T, Jaber M, Bazzi H, Lambert JF (2013) Formation of activated biomolecules by condensation on mineral surfaces – A comparison of peptide bond formation and phosphate condensation. Orig Life Evol Biosph 43:429–443PubMedCrossRefGoogle Scholar
  45. Gill R (2010) Igneous rocks and processes: a practical guide. Wiley-Blackwell, Chichester, pp 131–160Google Scholar
  46. Glotch TD, Bandfield JL, Tornabene LL, Jensen HB, Seelos FP (2010) Distribution and formation of chlorides and phyllosilicates in Terra Sirenum, Mars. Geophys Res Lett 37:L16202CrossRefGoogle Scholar
  47. Hazen RM (2006) Mineral surfaces and the prebiotic selection and organization of biomolecules. Am Mineral 91:1715–1729CrossRefGoogle Scholar
  48. Hazen RM (2013) Paleomineralogy of the Hadean eon: a preliminary species list. Am J Sci 313:807–843CrossRefGoogle Scholar
  49. Hedges JI, Hare PE (1987) Amino acid adsorption by clay minerals in distilled water. Geochim Cosmochim Acta 51:255–259CrossRefGoogle Scholar
  50. Hill RD (1992) An efficient lightning energy source on the early Earth. Orig Life Evol Biosph 22:277–285PubMedCrossRefGoogle Scholar
  51. Huber C, Wächtershauser G (1998) Peptides by activation of amino acids with CO on (Ni, Fe)S surfaces: implications for the origin of life. Science 281:670–672PubMedCrossRefGoogle Scholar
  52. Imai E-i, Honda H, Hatori K, Brack A, Matsuno K (1999a) Elongation of oligopeptides in a simulated submarine hydrothermal system. Science 283:831–833PubMedCrossRefGoogle Scholar
  53. Imai E-i, Honda H, Hatori K, Matsuno K (1999b) Autocatalytic synthesis of oligoglycine in a simulated submarine hydrothermal system. Orig Life Evol Biosph 29:249–259PubMedCrossRefGoogle Scholar
  54. Johnson AP, Cleaves HJ, Dworkin JP, Glavin DP, Lazcano A, Bada JL (2008) The Miller volcanic spark discharge experiment. Science 322:404PubMedCrossRefGoogle Scholar
  55. Jover J, Bosque R, Sales J (2008) A comparison of the binding affinity of the common amino acids with different metal cations. Dalton Trans 6441–6453. doi: 10.1039/b805860a
  56. Keeling JL, Raven MD, Gates WP (2000) Geology and characterization of two hydrothermal nontronites from weathered metamorphic rocks at the Uley graphite mine, South Australia. Clay Clay Miner 48:537–548CrossRefGoogle Scholar
  57. Killops S, Killops V (2005) Introduction to organic geochemistry, 2nd edn. Blackwell, Malden, p 72Google Scholar
  58. Kitadai N, Yokoyama T, Nakashima S (2011) Hydration–dehydration interactions between glycine and anhydrous salts: implications for a chemical evolution of life. Geochim Cosmochim Acta 75:6285–6299CrossRefGoogle Scholar
  59. Knauth LP (1998) Salinity history of the Earth’s early ocean. Nature 395:554–555PubMedCrossRefGoogle Scholar
  60. Krumm S (1994) Atterberg: a program for calculation of settling times, grain diameters, falling heights. For a newer version, see: http://www.gzn.uni-erlangen.de/krustendynamik/mitarbeiter/akademische-mitarbeiter/krumm/software. Accessed 16 Aug 2016
  61. Kuzmin RO, Mironenko MV, Evdokimova NA (2009) Spectral and thermodynamic constraints on the existence of gypsum at the Juventae Chasma on Mars. Planet Space Sci 57:975–981CrossRefGoogle Scholar
  62. Kvick Å, Canning WM, Koetzle TF, Williams GJB (1980) An experimental study of the influence of temperature on a hydrogen-bonded system: the crystal structure of γ-glycine at 83 K and 298 K by neutron diffraction. Acta Crystallogr B 36:115–120CrossRefGoogle Scholar
  63. Lagaly G, Ogawa M, Dékány I (2013) Clay mineral–organic interactions. In: Bergaya F, Lagaly G (eds) Handbook of clay science, part A: fundamentals, 2nd edn. Elsevier, Amsterdam, pp 435–505CrossRefGoogle Scholar
  64. Lahav N, White DH (1980) A possible role of fluctuating clay-water systems in the production of ordered prebiotic oligomers. J Mol Evol 16:11–21PubMedCrossRefGoogle Scholar
  65. Lahav N, White DH, Chang S (1978) Peptide formation in the prebiotic era: thermal condensation of glycine in fluctuating clay environments. Science 201:67–69PubMedCrossRefGoogle Scholar
  66. Lambert JF (2008) Adsorption and polymerization of amino acids on mineral surfaces: a review. Orig Life Evol Biosph 38:211–242PubMedCrossRefGoogle Scholar
  67. Langan P, Mason SA, Myles D, Schoenborn BP (2002) Structural characterization of crystals of α-glycine during anomalous electrical behaviour. Acta Crystallogr B 58:728–733PubMedCrossRefGoogle Scholar
  68. Lellouch E, Encrenaz T, de Graauw T, Erard S, Morris P, Crovisier J, Feuchtgruber H, Girard T, Burgdorf M (2000) The 2.4–45 μm spectrum of Mars observed with the Infrared Space Observatory. Planet Space Sci 48:1393–1405CrossRefGoogle Scholar
  69. Leman L, Orgel L, Ghadiri MR (2004) Carbonyl sulfide–mediated prebiotic formation of peptides. Science 306:283–286PubMedCrossRefGoogle Scholar
  70. Leman LJ, Orgel LE, Ghadiri MR (2006) Amino acid dependent formation of phosphate anhydrides in water mediated by carbonyl sulfide. J Am Chem Soc 128:20–21PubMedCrossRefGoogle Scholar
  71. Mangold N, Poulet F, Mustard JF, Bibring J-P, Gondet B, Langevin Y, Ansan V, Masson P, Fassett C, Head JW III, Hoffmann H, Neukum G (2007) Mineralogy of the Nili Fossae region with OMEGA/Mars Express data: 2. Aqueous alteration of the crust. J Geophys Res 112:E08S04CrossRefGoogle Scholar
  72. Martins Z, Sephton MA (2009) Extraterrestrial amino acids. In: Hughes AB (ed) Amino acids, peptides and proteins in organic chemistry, vol 1. Wiley-VCH, Weinheim, pp 3–42Google Scholar
  73. Martra G, Deiana C, Sakhno Y, Barberis I, Fabbiani M, Pazzi M, Vincenti M (2014) The formation and self-assembly of long prebiotic oligomers produced by the condensation of unactivated amino acids on oxide surfaces. Angew Chem Int Ed 53:4671–4674CrossRefGoogle Scholar
  74. McSween HY Jr (1994) What we have learned about Mars from SNC meteorites. Meteoritics 29:757–779CrossRefGoogle Scholar
  75. McSween HY Jr, Taylor GJ, Wyatt MB (2009) Elemental composition of the Martian crust. Science 324:736–739PubMedCrossRefGoogle Scholar
  76. Meng M, Xia L-Y, Guo L-H (2007) Adsorption and thermal condensation of glycine on kaolinite. Acta Phys-Chim Sin 23:32–36Google Scholar
  77. Mermut AR, Cano AF (2001) Baseline studies of the Clay Minerals Society source clays: chemical analyses of major elements. Clays Clay Miner 49:381–386CrossRefGoogle Scholar
  78. Miller SL (1953) A production of amino acids under possible primitive Earth conditions. Science 117:528–529PubMedCrossRefGoogle Scholar
  79. Miller SL (1955) Production of some organic compounds under possible primitive Earth conditions. J Am Chem Soc 77:2351–2361CrossRefGoogle Scholar
  80. Morris RV, Ruff SW, Gellert R, Ming DW, Arvidson RE, Clark BC, Golden DC, Siebach K, Klingelhöfer G, Schröder C, Fleischer I, Yen AS, Squyres SW (2010) Identification of carbonate-rich outcrops on Mars by the Spirit Rover. Science 329:421–424PubMedCrossRefGoogle Scholar
  81. Mustard JF, Murchie SL, Pelkey SM, Ehlmann BL, Milliken RE, Grant JA, Bibring J-P, Poulet F, Bishop J, Noe Dobrea E, Roach L, Seelos F, Arvidson RE, Wiseman S, Green R, Hash C, Humm D, Malaret E, McGovern JA, Seelos K, Clancy T, Clark R, Des Marais D, Izenberg N, Knudson A, Langevin Y, Martin T, McGuire P, Morris R, Robinson M, Roush T, Smith M, Swayze G, Taylor H, Titus T, Wolff M (2008) Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument. Nature 454:305–309PubMedCrossRefGoogle Scholar
  82. Nair NN, Schreiner E, Marx D (2008) Peptide synthesis in aqueous environments: the role of extreme conditions on amino acid activation. J Am Chem Soc 130:14148–14160PubMedCrossRefGoogle Scholar
  83. Navarro-González R, Segura A (2004) The possible role of volcanic lightning in chemical evolution. In: Seckbach J (ed) Origins: genesis, evolution and diversity of life. Kluwer, Dordrecht, pp 137–152Google Scholar
  84. Nimmo F, Tanaka K (2005) Early crustal evolution of Mars. Annu Rev Earth Planet Sci 33:133–161CrossRefGoogle Scholar
  85. Nisbet EG, Fowler CMR (2004) The early history of life. In: Schlesinger WH (ed) Biogeochemistry; Vol. 8 of Holland HD, Turekian KK (eds) Treatise on geochemistry. Elsevier Pergamon, Oxford, pp 1–39Google Scholar
  86. Nna-Mvondo D, Martinez-Frias J (2007) Review komatiites: from Earth’s geological settings to planetary and astrobiological contexts. Earth Moon Planets 100:157–179CrossRefGoogle Scholar
  87. Noe Dobrea EZ, Poulet F, Malin MC (2008) Correlations between hematite and sulfates in the chaotic terrain east of Valles Marineris. Icarus 193:516–534CrossRefGoogle Scholar
  88. Odom IE (1984) Smectite clay minerals: properties and uses. Phil Trans R Soc Lond A 311:391–409CrossRefGoogle Scholar
  89. Ohara S, Kakegawa T, Nakazawa H (2007) Pressure effects on the abiotic polymerization of glycine. Orig Life Evol Biosph 37:215–223PubMedCrossRefGoogle Scholar
  90. Olsen JV, de Godoy LMF, Li G, Macek B, Mortensen P, Pesch R, Makarov A, Lange O, Horning S, Mann M (2005) Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Mol Cell Proteomics 4:2010–2021PubMedCrossRefGoogle Scholar
  91. Osterloo MM, Hamilton VE, Bandfield JL, Glotch TD, Baldridge AM, Christensen PR, Tornabene LL, Anderson FS (2008) Chloride–bearing materials in the southern highlands of Mars. Science 319:1651–1654PubMedCrossRefGoogle Scholar
  92. Otake T, Taniguchi T, Furukawa Y, Kawamura F, Nakazawa H, Kakegawa T (2011) Stability of amino acids and their oligomerization under high-pressure conditions: implications for prebiotic chemistry. Astrobiology 11:799–813PubMedCrossRefGoogle Scholar
  93. Palomba E, Zinzi A, Cloutis EA, D’Amore M, Grassi D, Maturilli A (2009) Evidence for Mg-rich carbonates on Mars from a 3.9 μm absorption feature. Icarus 203:58–65CrossRefGoogle Scholar
  94. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516CrossRefGoogle Scholar
  95. Pearson RG (1968) Hard and soft acids and bases, HSAB, part I: fundamental principles. J Chem Educ 45:581–587CrossRefGoogle Scholar
  96. Pizzarello S, Cooper GW, Flynn GJ (2006) The nature and distribution of the organic material in carbonaceous chondrites and interplanetary dust particles. In: Lauretta DS, McSween HY Jr (eds) Meteorites and the early solar system II. The University of Arizona Press, Tucson, pp 625–651Google Scholar
  97. Poch O, Jaber M, Stalport F, Nowak S, Georgelin T, Lambert J-F, Szopa C, Coll P (2015) Effect of nontronite smectite clay on the chemical evolution of several organic molecules under simulated Martian surface ultraviolet radiation conditions. Astrobiology 15:221–237PubMedCrossRefGoogle Scholar
  98. Ponnamperuma C, Shimoyama A, Friebele E (1982) Clay and the origin of life. Orig Life Evol Biosph 12:9–40CrossRefGoogle Scholar
  99. Poulet F, Bibring J-P, Mustard JF, Gendrin A, Mangold N, Langevin Y, Arvidson RE, Gondet B, Gomez C, the Omega Team (2005) Phyllosilicates on Mars and implications for early Martian climate. Nature 438:623–627PubMedCrossRefGoogle Scholar
  100. Poulet F, Mangold N, Loizeau D, Bibring J-P, Langevin Y, Michalski J, Gondet B (2008) Abundance of minerals in the phyllosilicate-rich units on Mars. Astron Astrophys 487:L41–L44CrossRefGoogle Scholar
  101. Remko M, Rode BM (2001) Catalyzed peptide bond formation in the gas phase. Phys Chem Chem Phys 3:4667–4673CrossRefGoogle Scholar
  102. Remko M, Rode BM (2004) Catalyzed peptide bond formation in the gas phase. Role of bivalent cations and water in formation of 2-aminoacetamide from ammonia and glycine and in dimerization of glycine. Struct Chem 15:223–232CrossRefGoogle Scholar
  103. Rieder R, Economou T, Wänke H, Turkevich A, Crisp J, Brückner J, Dreibus G, McSween HY Jr (1997) The chemical composition of Martian soil and rocks returned by the mobile alpha proton X-ray spectrometer: preliminary results from the X-ray mode. Science 278:1771–1774PubMedCrossRefGoogle Scholar
  104. Righi D, Meunier A (1995) Origin of clays by rock weathering and soil formation. In: Velde B (ed) Origin and mineralogy of clays. Springer, Berlin, pp 43–161CrossRefGoogle Scholar
  105. Rode BM, Schwendinger MG (1990) Copper-catalyzed amino acid condensation in water – A simple possible way of prebiotic peptide formation. Orig Life Evol Biosph 20:401–410CrossRefGoogle Scholar
  106. Sato M (1999) Preparation of kaolinite-amino acid intercalates derived from hydrated kaolinite. Clay Clay Miner 47:793–802CrossRefGoogle Scholar
  107. Schlesinger G, Miller SL (1983) Prebiotic synthesis in atmospheres containing CH4, CO, and CO2 I. Amino acids. J Mol Evol 19:376–382PubMedCrossRefGoogle Scholar
  108. Schwendinger MG, Rode BM (1989) Possible role of copper and sodium chloride in prebiotic evolution of peptides. Anal Sci 5:411–414CrossRefGoogle Scholar
  109. Shanker U, Bhushan B, Bhattacharjee G, Kamaluddin (2012) Oligomerization of glycine and alanine catalyzed by iron oxides: implications for prebiotic chemistry. Orig Life Evol Biosph 42:31–45PubMedCrossRefGoogle Scholar
  110. Shock EL, Schulte MD (1990) Summary and implications of reported amino acid concentrations in the Murchison meteorite. Geochim Cosmochim Acta 54:3159–3173PubMedCrossRefGoogle Scholar
  111. Sleep NH (2010) The Hadean-Archaean environment. Cold Spring Harb Perspect Biol 2:a002527PubMedPubMedCentralCrossRefGoogle Scholar
  112. Srinivasan K, Arumugam J (2007) Growth of non-linear optical γ-glycine single crystals and their characterization. Opt Mater 30:40–43CrossRefGoogle Scholar
  113. Strasdeit H (2010) Chemical evolution and early Earth’s and Mars’ environmental conditions. Palaeodiversity Suppl 3:107–116Google Scholar
  114. Sugahara H, Mimura K (2014a) Shock-induced pyrolysis of amino acids at ultra high pressures ranged from 3.2 to 35.3 GPa. J Anal Appl Pyrolysis 108:170–175CrossRefGoogle Scholar
  115. Sugahara H, Mimura K (2014b) Glycine oligomerization up to triglycine by shock experiments simulating comet impacts. Geochem J 48:51–62CrossRefGoogle Scholar
  116. Taylor SR, McLennan SM (2009) Planetary crusts: their composition, origin and evolution. Cambridge University Press, Cambridge, pp 141–180, 233–274 Google Scholar
  117. The Clay Minerals Society (2016) Source clay physical/chemical data. http://www.clays.org/Sourceclays.html. Accessed 16 Aug 2016
  118. Tsukahara H, Imai E-i, Honda H, Hatori K, Matsuno K (2002) Prebiotic oligomerization on or inside lipid vesicles in hydrothermal environments. Orig Life Evol Biosph 32:13–21PubMedCrossRefGoogle Scholar
  119. Van Kranendonk MJ, Webb GE, Kamber BS (2003) Geological and trace element evidence for a marine sedimentary environment of deposition and biogenicity of 3.45 Ga stromatolitic carbonates in the Pilbara Craton, and support for a reducing Archaean ocean. Geobiology 1:91–108CrossRefGoogle Scholar
  120. Van Kranendonk MJ, Philippot P, Lepot K, Bodorkos S, Pirajno F (2008) Geological setting of Earth’s oldest fossils in the ca. 3.5 Ga Dresser formation, Pilbara Craton, Western Australia. Precambrian Res 167:93–124CrossRefGoogle Scholar
  121. Wang A, Freeman JJ, Jolliff BL, Chou I-M (2006) Sulfates on Mars: a systematic Raman spectroscopic study of hydration states of magnesium sulfates. Geochim Cosmochim Acta 70:6118–6135CrossRefGoogle Scholar
  122. Westall F, de Ronde CEJ, Southam G, Grassineau N, Colas M, Cockell C, Lammer H (2006) Implications of a 3.472–3.333 Gyr-old subaerial microbial mat from the Barberton greenstone belt, South Africa for the UV environmental conditions on the early Earth. Phil Trans R Soc B 361:1857–1875PubMedPubMedCentralCrossRefGoogle Scholar
  123. Wray JJ, Squyres SW, Roach LH, Bishop JL, Mustard JF, Noe Dobrea EZ (2010) Identification of the Ca-sulfate bassanite in Mawrth Vallis, Mars. Icarus 209:416–421CrossRefGoogle Scholar
  124. Xiao L, Huang J, Christensen PR, Greeley R, Williams DA, Zhao J, He Q (2012) Ancient volcanism and its implication for thermal evolution of Mars. Earth Planet Sci Lett 323–324:9–18CrossRefGoogle Scholar
  125. Yusenko K, Fox S, Guni P, Strasdeit H (2008) Model studies on the formation and reactions of solid glycine complexes at the coasts of a primordial salty ocean. Z Anorg Allg Chem 634:2347–2354CrossRefGoogle Scholar
  126. Zaia DAM, Zaia CTBV, De Santana H (2008) Which amino acids should be used in prebiotic chemistry studies? Orig Life Evol Biosph 38:469–488PubMedCrossRefGoogle Scholar
  127. Zheng W, Zhou J, Zhang Z, Chen L, Zhang Z, Li Y, Ma N, Du P (2014) Formation of intercalation compound of kaolinite–glycine via displacing guest water by glycine. J Colloid Interface Sci 432:278–284PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Punam Dalai
    • 1
  • Hannes Lukas Pleyer
    • 1
  • Henry Strasdeit
    • 1
  • Stefan Fox
    • 1
  1. 1.Department of Bioinorganic Chemistry, Institute of ChemistryUniversity of HohenheimStuttgartGermany

Personalised recommendations