Low Pressure Tolerance by Methanogens in an Aqueous Environment: Implications for Subsurface Life on Mars

Abstract

The low pressure at the surface of Mars (average: 6 mbar) is one potentially biocidal factor that any extant life on the planet would need to endure. Near subsurface life, while shielded from ultraviolet radiation, would also be exposed to this low pressure environment, as the atmospheric gas-phase pressure increases very gradually with depth. Few studies have focused on low pressure as inhibitory to the growth or survival of organisms. However, recent work has uncovered a potential constraint to bacterial growth below 25 mbar. The study reported here tested the survivability of four methanogen species (Methanothermobacter wolfeii, Methanosarcina barkeri, Methanobacterium formicicum, Methanococcus maripaludis) under low pressure conditions approaching average martian surface pressure (6 mbar – 143 mbar) in an aqueous environment. Each of the four species survived exposure of varying length (3 days – 21 days) at pressures down to 6 mbar. This research is an important stepping-stone to determining if methanogens can actively metabolize/grow under these low pressures. Additionally, the recently discovered recurring slope lineae suggest that liquid water columns may connect the surface to deeper levels in the subsurface. If that is the case, any organism being transported in the water column would encounter the changing pressures during the transport.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Altheide T, Chevrier V, Nicholson C, Denson J (2009) Experimental investigation of the stability and evaporation of sulfate and chloride brines on Mars. Earth Planet Sci Lett 282:69–78

    CAS  Article  Google Scholar 

  2. Anderson KL, Apolinario EE, Sowers KR (2012) Desiccation as a long-term survival mechanism for the archaeon Methanosarcina barkeri. Appl Environ Microbiol 78:1473–1479. doi:10.1128/AEM.06964-11

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Atreya SK, GU ZG (1994) Stability of the Martian atmosphere: Is heterogeneous catalysis essential? Journal of Geophysical Research: Planets 99(1991–2012):13133–13145

  4. Atreya SK, Mahaffy PR, Wong A-S (2007) Methane and related trace species on Mars: Origin, loss, implications for life, and habitability. Planetary and Space Science 55:358–369

    CAS  Article  Google Scholar 

  5. Barth CA, Fastie WG, Hord CW, Pearce JB, Kelly KK, Stewart AI, Thomas GE, Anderson GP, Raper OF (1969) Mariner 6: Ultraviolet spectrum of Mars upper atmosphere. Science 165:1004–1005

    CAS  Article  PubMed  Google Scholar 

  6. Boone DR, Johnson RL, Liu Y (1989) Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implications in the measurement of Km for H2 or formate uptake. Appl Environ Microbiol 55:1735–1741

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Boston PJ, Ivanov MV, McKay CP (1992) On the possibility of chemosynthetic ecosystems in subsurface habitats on Mars. Icarus 95:300–308

    CAS  Article  PubMed  Google Scholar 

  8. Boynton W, Feldman W, Squyres S, Prettyman T, Br‚àö¬∫ckner J, Evans L, Reedy R, Starr R, Arnold J, Drake D (2002) Distribution of hydrogen in the near surface of Mars: Evidence for subsurface ice deposits. Science 297:81–85

    CAS  Article  PubMed  Google Scholar 

  9. Chassefière E, Leblanc F (2011) Constraining methane release due to serpentinization by the observed D/H ratio on Mars. Earth Planet Sci Lett 310:262–271

    Article  Google Scholar 

  10. Chastain BK, Chevrier V (2007) Methane clathrate hydrates as a potential source for martian atmospheric methane. Planetary and Space Science 55:1246–1256

    CAS  Article  Google Scholar 

  11. Clancy RT, Muhleman DO, Jakosky BM (1983) Variability of carbon monoxide in the Mars atmosphere. Icarus 55:282–301

    CAS  Article  Google Scholar 

  12. Daniels L, Fuchs G, Thauer RK, Zeikus JG (1977) Carbon monoxide oxidation by methanogenic bacteria. J Bacteriol 132:118–126

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Fajardo-Cavazos P, Waters SM, Schuerger AC, George S, Marois JJ, Nicholson WL (2012) Evolution of Bacillus subtilis to Enhanced Growth at Low Pressure: Up-Regulated Transcription of des-desKR, Encoding the Fatty Acid Desaturase System. Astrobiology 12:258–270

    CAS  Article  PubMed  Google Scholar 

  14. Feldman WC, Boynton WV, Tokar RL, Prettyman TH, Gasnault O, Squyres SW, Elphic RC, Lawrence DJ, Lawson SL, Maurice S (2002) Global distribution of neutrons from Mars: Results from Mars Odyssey. Science 297:75–78

    CAS  Article  PubMed  Google Scholar 

  15. Fonti S, Marzo GA (2010) Mapping the methane on Mars. Astron Astrophys 512:A51. doi:10.1051/0004-6361/200913178

    Article  Google Scholar 

  16. Formisano V, Atreya S, Encrenaz T, Ignatiev N, Giuranna M (2004) Detection of methane in the atmosphere of Mars. Science 306:1758–1761

    CAS  Article  PubMed  Google Scholar 

  17. Gandolfi I, Bertolini V, Ambrosini R, Bestetti G, Franzetti A (2013) Unravelling the bacterial diversity in the atmosphere. Appl Microbiol Biotechnol 97:4727–4736

    CAS  Article  PubMed  Google Scholar 

  18. Geminale A, Formisano V, Giuranna M (2008) Methane in Martian atmosphere: average spatial, diurnal, and seasonal behaviour. Planetary and Space Science 56:1194–1203

    CAS  Article  Google Scholar 

  19. Geminale A, Formisano V, Sindoni G (2011) Mapping methane in Martian atmosphere with PFS-MEX data. Planetary and Space Science 59:137–148

    CAS  Article  Google Scholar 

  20. Griffin DW (2004) Terrestrial microorganisms at an altitude of 20,000 m in Earth’s atmosphere. Aerobiologia 20:135–140

    Article  Google Scholar 

  21. Griffin DW (2008) Non-spore forming eubacteria isolated at an altitude of 20,000 m in Earth’s atmosphere: extended incubation periods needed for culture-based assays. Aerobiologia 24:19–25

    Article  Google Scholar 

  22. Grimm RE, Harrison KP, Stillman DE (2014) Water budgets of martian recurring slope lineae. Icarus 233:316–327. doi:10.1016/j.icarus.2013.11.013

    CAS  Article  Google Scholar 

  23. Haberle RM, McKay CP, Schaeffer J, Cabrol NA, Grin EA, Zent AP, Quinn R (2001) On the possibility of liquid water on present-day Mars. Journal of Geophysical Research: Planets 106(1991-2012):23317–23326

    CAS  Article  Google Scholar 

  24. Hess SL, Henry RM, JE T (1979) The seasonal variation of atmospheric pressure on Mars as affected by the south polar cap. Journal of Geophysical Research: Solid Earth 84(1978–2012):2923–2927

    CAS  Article  Google Scholar 

  25. Hess SL, Ryan JA, Tillman JE, Henry RM, Leovy CB (1980) The annual cycle of pressure on Mars measured by Viking landers 1 and 2. Geophys Res Lett 7:197–200

    Article  Google Scholar 

  26. Johnson AP, Pratt LM, Vishnivetskaya T, Pfiffner S, Bryan RA, Dadachova E, Whyte L, Radtke K, Chan E, Tronick S (2011) Extended survival of several organisms and amino acids under simulated martian surface conditions. Icarus 211:1162–1178

    CAS  Article  Google Scholar 

  27. Jones WJ, Paynter MJB, Gupta R (1983) Characterization of Methanococcus maripaludis sp. nov., a new methanogen isolated from salt marsh sediment. Arch Microbiol 135:91–97

    Article  Google Scholar 

  28. Jones EG, Lineweaver CH, Clarke JD (2011) An extensive phase space for the potential martian biosphere. Astrobiology 11:1017–1033

    Article  PubMed  Google Scholar 

  29. Kandler O, Hippe H (1977) Lack of peptidoglycan in the cell walls of Methanosarcina barkeri. Arch Microbiol 113:57–60

    CAS  Article  PubMed  Google Scholar 

  30. Kandler O, König H (1978) Chemical composition of the peptidoglycan-free cell walls of methanogenic bacteria. Arch Microbiol 118:141–152

    CAS  Article  PubMed  Google Scholar 

  31. Kendrick MG, Kral TA (2006) Survival of methanogens during desiccation: implications for life on Mars. Astrobiology 6:546–551

    CAS  Article  PubMed  Google Scholar 

  32. King GM (2015) Carbon monoxide as a metabolic energy source for extremely halophilic microbes: implications for microbial activity in Mars regolith. Proc Natl Acad Sci 112:4465–4470

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Kral TA, Altheide TS (2013) Methanogen survival following exposure to desiccation, low pressure and martian regolith analogs. Planetary and Space Science 89:167–171

    CAS  Article  Google Scholar 

  34. Kral TA, Brink KM, Miller SL, McKay CP (1998) Hydrogen consumption by methanogens on the early Earth. Origins of Life and Evolution of Biospheres 28:311–319

    CAS  Article  Google Scholar 

  35. Kral TA, Bekkum CR, McKay CP (2004) Growth of methanogens on a Mars soil simulant. Orig Life Evol Biosph 34:615–626

    CAS  Article  PubMed  Google Scholar 

  36. Kral TA, Altheide TS, Lueders AE, Schuerger AC (2011) Low pressure and desiccation effects on methanogens: Implications for life on Mars. Planetary and Space Science 59:264–270

    CAS  Article  Google Scholar 

  37. Kral TA, Birch W, Lavender LE, Virden BT (2014) Potential use of highly insoluble carbonates as carbon sources by methanogens in the subsurface of Mars. Planetary and Space Science 101:181–185. doi:10.1016/j.pss.2014.07.008

    CAS  Article  Google Scholar 

  38. Kral TA, Goodhart TH, Harpool JD, Hearnsberger CE, McCracken GL, McSpadden SW (2016) Sensitivity and adaptability of methanogens to perchlorates: Implications for life on Mars. Planetary and Space Science 120:87–95

    CAS  Article  Google Scholar 

  39. Krasnopolsky VA (1993) Photochemistry of the Martian atmosphere (mean conditions). Icarus 101:313–332

    CAS  Article  Google Scholar 

  40. Krasnopolsky VA (2007) Long-term spectroscopic observations of Mars using IRTF/CSHELL: Mapping of O2 dayglow, CO, and search for CH4. Icarus 190:93–102

    CAS  Article  Google Scholar 

  41. Krasnopolsky VA, Feldman PD (2001) Detection of molecular hydrogen in the atmosphere of Mars. Science 294:1914–1917

    CAS  Article  PubMed  Google Scholar 

  42. Krasnopolsky VA, Bjoraker GL, Mumma MJ, Jennings DE (1997) High-resolution spectroscopy of Mars at 3.7 and 8 μm: A sensitive search for H2O2, H2CO, HCl, and CH4, and detection of HDO. J Geophys Res 102:6525–6534

    CAS  Article  Google Scholar 

  43. Krasnopolsky VA, Maillard JP, Owen TC (2004) Detection of methane in the martian atmosphere: evidence for life? Icarus 172:537–547

    CAS  Article  Google Scholar 

  44. Lellouch E, Encrenaz T, Phillips T, Falgarone E, Billebaud F (1991) Submillimeter observations of CO in Mars’ atmosphere. Planetary and Space Science 39:209–212

    Article  Google Scholar 

  45. Lyons JR, Manning C, Nimmo F (2005) Formation of methane on Mars by fluid-rock interaction in the crust. Geophys Res Lett 32

  46. Maguire WC (1977) Martian isotopic ratios and upper limits for possible minor constituents as derived from Mariner 9 infrared spectrometer data. Icarus 32:85–97

    CAS  Article  Google Scholar 

  47. Malin MC, Edgett KS (2000) Evidence for recent groundwater seepage and surface runoff on Mars. Science 288:2330–2335

    CAS  Article  PubMed  Google Scholar 

  48. Martin DD, Ciulla RA, Roberts MF (1999) Osmoadaptation in Archaea. Appl Environ Microbiol 65:1815–1825

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Martín-Torres FJ, Zorzano M-P, Valentín-Serrano P, Harri A-M, Genzer M, Kemppinen O, Rivera-Valentin EG, Jun I, Wray J, Madsen MB, Goetz W, McEwen AS, Hardgrove C, Renno N, Chevrier VF, Mischna M, Navarro-González R, Martínez-Frías J, Conrad P, McConnochie T, Cockell C, Berger G, Vasavada AR, Sumner D, Vaniman D (2015) Transient liquid water and water activity at Gale crater on Mars. Nat Geosci 8:357–361

    Article  Google Scholar 

  50. McCollom TM, Bach W (2009) Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks. Geochim Cosmochim Acta 73:856–875

    CAS  Article  Google Scholar 

  51. McEwen AS, Ojha L, Dundas CM, Mattson SS, Byrne S, Wray JJ, Cull SC, Murchie SL, Thomas N, Gulick VC (2011) Seasonal flows on warm martian slopes. Science 333:740–743

    CAS  Article  PubMed  Google Scholar 

  52. McEwen AS, Dundas CM, Mattson SS, Toigo AD, Ojha L, Wray JJ, Chojnacki M, Byrne S, Murchie SL, Thomas N (2014) Recurring slope lineae in equatorial regions of Mars. Nat Geosci 7:53–58

    CAS  Article  Google Scholar 

  53. Mitrofanov I, Anfimov D, Kozyrev A, Litvak M, Sanin A, Tret’yakov V, Krylov A, Shvetsov V, Boynton W, Shinohara C, Hamara D, Saunders RS (2002) Maps of subsurface hydrogen from the high energy neutron detector, Mars Odyssey. Science 297:78–81

    CAS  Article  PubMed  Google Scholar 

  54. Morozova D, Möhlmann D, Wagner D (2007) Survival of methanogenic archaea from Siberian permafrost under simulated Martian thermal conditions. Origins of Life and Evolution of Biospheres 37:189–200

    CAS  Article  Google Scholar 

  55. Mumma MJ, Villanueva GL, Novak RE, Hewagama T, Bonev BP, DiSanti MA, Mandell AM, Smith MD (2009) Strong release of methane on Mars in northern summer 2003. Science 323:1041–1045

    CAS  Article  PubMed  Google Scholar 

  56. Nair H, Allen M, Anbar AD, Yung YL, Clancy RT (1994) A photochemical model of the Martian atmosphere. Icarus 111:124–150

    CAS  Article  PubMed  Google Scholar 

  57. Ni S, Boone DR (1991) Isolation and characterization of a dimethyl sulfide-degrading methanogen, Methanolobus siciliae HI350, from an oil well, characterization of M. siciliae T4/MT, and emendation of M. siciliae. Int J Syst Bacteriol 41:410–416

    CAS  Article  PubMed  Google Scholar 

  58. Nicholson WL, Krivushin K, Gilichinsky D, Schuerger AC (2013) Growth of Carnobacterium spp. from permafrost under low pressure, temperature, and anoxic atmosphere has implications for Earth microbes on Mars. Proc Natl Acad Sci 110:666–671

    CAS  Article  PubMed  Google Scholar 

  59. O’Brien JM, Wolkin RH, Moench TT, Morgan JB, Zeikus JG (1984) Association of hydrogen metabolism with unitrophic or mixotrophic growth of Methanosarcina barkeri on carbon monoxide. J Bacteriol 158:373–375

    PubMed  PubMed Central  Google Scholar 

  60. Ojha L, Wilhelm MB, Murchie SL, McEwen AS, Wray JJ, Hanley J, Massé M, Chojnacki M (2015) Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nat Geosci 8:829–832

    CAS  Article  Google Scholar 

  61. Onstott TC, McGown D, Kessler J, Lollar BS, Lehmann KK, Clifford SM (2006) Martian CH4: sources, flux, and detection. Astrobiology 6:377–395

    CAS  Article  PubMed  Google Scholar 

  62. Oze C, Sharma M (2005) Have olivine, will gas: Serpentinization and the abiogenic production of methane on Mars. Geophysical Research Letters. doi:10.1029/2005GL022691

    Google Scholar 

  63. Rennó NO, Bos BJ, Catling D, Clark BC, Drube L, Fisher D, Goetz W, Hviid SF, Keller HU, Kok JF, Kounaves SP, Leer K, Lemmon M, Madsen MB, Markiewicz WJ, Marshall J, McKay C, Mehta M, Smith M, Zorzano MP, Smith PH, Stoker C, Young SMM (2009) Possible physical and thermodynamical evidence for liquid water at the Phoenix landing site. Journal of Geophysical Research: Planets 1991–2012:114. doi:10.1029/2009JE003362

    Google Scholar 

  64. Roberts MF (2004) Osmoadaptation and osmoregulation in Archaea: update 2004. Front Biosci 9:1999–2019

    CAS  Article  PubMed  Google Scholar 

  65. Schirmack J, Böhm M, Brauer C, Löhmannsröben H-G, de Vera J-P, Möhlmann D, Wagner D (2014) Laser spectroscopic real time measurements of methanogenic activity under simulated Martian subsurface analog conditions. Planetary and Space Science 98:198–204. doi:10.1016/j.pss.2013.08.019

    Article  Google Scholar 

  66. Schuerger AC, Golden DC, Ming DW (2012) Biotoxicity of Mars soils: 1. Dry deposition of analog soils on microbial colonies and survival under Martian conditions. Planetary and Space Science 72:91–101. doi:10.1016/j.pss.2012.07.026

    CAS  Article  Google Scholar 

  67. Schuerger AC, Ulrich R, Berry BJ, Nicholson WL (2013) Growth of Serratia liquefaciens under 7 mbar, 0 degrees C, and CO2-enriched anoxic atmospheres. Astrobiology 13:115–131. doi:10.1089/ast.2011.0811

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. Sears DW, Chittenden JD (2005) On laboratory simulation and the temperature dependence of the evaporation rate of brine on Mars. Geophys Res Lett 32

  69. Smith PH, Tamppari LK, Arvidson RE, Bass D, Blaney D, Boynton WV, Carswell A, Catling DC, Clark BC, Duck T, DeJong E, Fisher D, Goetz W, Gunnlaugsson HP, Hecht MH, Hipkin V, Hoffman J, Hviid SF, Keller HU, Kounaves SP, Lange CF, Lemmon MT, Madsen MB, Markiewicz WJ, Marshall J, McKay CP, Mellon MT, Ming DW, Morris RV, Pike WT, Renno N, Staufer U, Stoker C, Taylor P, Whiteway JA, Zent AP (2009) H2O at the Phoenix landing site. Science 325:58–61

    CAS  Article  PubMed  Google Scholar 

  70. Smith DJ, Griffin DW, Schuerger AC (2010) Stratospheric microbiology at 20 km over the Pacific Ocean. Aerobiologia 26:35–46

    Article  Google Scholar 

  71. Sowers KR, Schreier H (1995) Archaea: A Laboratory Manual: Methanogens. Methanogens

  72. Spiga A, Forget F, Dolla B, Vinatier S, Melchiorri R, Drossart P, Gendrin A, Bibring JP, Langevin Y, Gondet B (2007) Remote sensing of surface pressure on Mars with the Mars Express/OMEGA spectrometer: 2. Meteorological maps. Journal of Geophysical Research: Planets 112(1991–2012)

  73. Stillman DE, Michaels TI, Grimm RE, Harrison KP (2014) New observations of martian southern mid-latitude recurring slope lineae (RSL) imply formation by freshwater subsurface flows. Icarus 233:328–341

    Article  Google Scholar 

  74. Tortora GJ, Funke BR, Case CL (2015) Microbiology: An Introduction, 12th Ed.

  75. Usui T, Alexander CMD, Wang J, Simon JI, Jones JH (2015) Meteoritic evidence for a previously unrecognized hydrogen reservoir on Mars. Earth Planet Sci Lett 410:140–151

    CAS  Article  Google Scholar 

  76. van de Vossenberg JL, Driessen AJ, Konings WN (1998) The essence of being extremophilic: the role of the unique archaeal membrane lipids. Extremophiles 2:163–170

    Article  PubMed  Google Scholar 

  77. Webster CR, Mahaffy PR, Atreya SK, Flesch GJ, Farley KA, Science Team MSL (2013) Low Upper Limit to Methane Abundance on Mars. Science 342:355–357

    CAS  Article  PubMed  Google Scholar 

  78. Webster CR, Mahaffy PR, Atreya SK, Flesch GJ, Mischna MA, Meslin P-Y, Farley KA, Conrad PG, Christensen LE, Pavlov AA, Martín-Torres J, Zorzano MP, McConnochie TH, Owen T, Eigenbrode JL, Glavin DP, Steele A, Malespin CA, Archer PD Jr, Sutter B, Coll P, Freissinet C, McKay CP, Moores JE, Schwenzer SP, Bridges JC, Navarro-Gonzalez R, Gellert R, Lemmon MT, Science Team MSL (2015) Mars methane detection and variability at Gale crater. Science 347:415–417

  79. Weiss BP, Yung YL, Nealson KH (2000) Atmospheric energy for subsurface life on Mars? Proc Natl Acad Sci 97:1395–1399

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  80. Wray JJ, Ehlmann BL (2011) Geology of possible Martian methane source regions. Planetary and Space Science 59:196–202

    CAS  Article  Google Scholar 

  81. Xun L, Boone DR, Mah RA (1988) Control of the life cycle of Methanosarcina mazei S-6 by manipulation of growth conditions. Appl Environ Microbiol 54:2064–2068

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Chris McKay for his helpful suggestions during the review process. The authors would like to acknowledge Walter Graupner at the Arkansas Center for Space and Planetary Sciences for his research assistance. The authors would also like to thank Larry Joe Steeley Jr. (Rainbow Technology, Pelham, AL) for his donation of duct seal putty. This research was supported by a grant from the National Aeronautics and Space Administration (NASA) Astrobiology: Exobiology and Evolutionary Biology Program, grant #NNX12AD90G and by grants from the Arkansas Space Grant Consortium.

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. L. Mickol.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mickol, R.L., Kral, T.A. Low Pressure Tolerance by Methanogens in an Aqueous Environment: Implications for Subsurface Life on Mars. Orig Life Evol Biosph 47, 511–532 (2017). https://doi.org/10.1007/s11084-016-9519-9

Download citation

Keywords

  • Methanogens
  • Mars
  • Methane
  • Low pressure
  • Survival