Origins of Life and Evolution of Biospheres

, Volume 47, Issue 4, pp 511–532 | Cite as

Low Pressure Tolerance by Methanogens in an Aqueous Environment: Implications for Subsurface Life on Mars

  • R. L. MickolEmail author
  • T. A. Kral


The low pressure at the surface of Mars (average: 6 mbar) is one potentially biocidal factor that any extant life on the planet would need to endure. Near subsurface life, while shielded from ultraviolet radiation, would also be exposed to this low pressure environment, as the atmospheric gas-phase pressure increases very gradually with depth. Few studies have focused on low pressure as inhibitory to the growth or survival of organisms. However, recent work has uncovered a potential constraint to bacterial growth below 25 mbar. The study reported here tested the survivability of four methanogen species (Methanothermobacter wolfeii, Methanosarcina barkeri, Methanobacterium formicicum, Methanococcus maripaludis) under low pressure conditions approaching average martian surface pressure (6 mbar – 143 mbar) in an aqueous environment. Each of the four species survived exposure of varying length (3 days – 21 days) at pressures down to 6 mbar. This research is an important stepping-stone to determining if methanogens can actively metabolize/grow under these low pressures. Additionally, the recently discovered recurring slope lineae suggest that liquid water columns may connect the surface to deeper levels in the subsurface. If that is the case, any organism being transported in the water column would encounter the changing pressures during the transport.


Methanogens Mars Methane Low pressure Survival 



The authors thank Dr. Chris McKay for his helpful suggestions during the review process. The authors would like to acknowledge Walter Graupner at the Arkansas Center for Space and Planetary Sciences for his research assistance. The authors would also like to thank Larry Joe Steeley Jr. (Rainbow Technology, Pelham, AL) for his donation of duct seal putty. This research was supported by a grant from the National Aeronautics and Space Administration (NASA) Astrobiology: Exobiology and Evolutionary Biology Program, grant #NNX12AD90G and by grants from the Arkansas Space Grant Consortium.


  1. Altheide T, Chevrier V, Nicholson C, Denson J (2009) Experimental investigation of the stability and evaporation of sulfate and chloride brines on Mars. Earth Planet Sci Lett 282:69–78CrossRefGoogle Scholar
  2. Anderson KL, Apolinario EE, Sowers KR (2012) Desiccation as a long-term survival mechanism for the archaeon Methanosarcina barkeri. Appl Environ Microbiol 78:1473–1479. doi: 10.1128/AEM.06964-11 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Atreya SK, GU ZG (1994) Stability of the Martian atmosphere: Is heterogeneous catalysis essential? Journal of Geophysical Research: Planets 99(1991–2012):13133–13145Google Scholar
  4. Atreya SK, Mahaffy PR, Wong A-S (2007) Methane and related trace species on Mars: Origin, loss, implications for life, and habitability. Planetary and Space Science 55:358–369CrossRefGoogle Scholar
  5. Barth CA, Fastie WG, Hord CW, Pearce JB, Kelly KK, Stewart AI, Thomas GE, Anderson GP, Raper OF (1969) Mariner 6: Ultraviolet spectrum of Mars upper atmosphere. Science 165:1004–1005CrossRefPubMedGoogle Scholar
  6. Boone DR, Johnson RL, Liu Y (1989) Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implications in the measurement of Km for H2 or formate uptake. Appl Environ Microbiol 55:1735–1741PubMedPubMedCentralGoogle Scholar
  7. Boston PJ, Ivanov MV, McKay CP (1992) On the possibility of chemosynthetic ecosystems in subsurface habitats on Mars. Icarus 95:300–308CrossRefPubMedGoogle Scholar
  8. Boynton W, Feldman W, Squyres S, Prettyman T, Br‚àö¬∫ckner J, Evans L, Reedy R, Starr R, Arnold J, Drake D (2002) Distribution of hydrogen in the near surface of Mars: Evidence for subsurface ice deposits. Science 297:81–85CrossRefPubMedGoogle Scholar
  9. Chassefière E, Leblanc F (2011) Constraining methane release due to serpentinization by the observed D/H ratio on Mars. Earth Planet Sci Lett 310:262–271CrossRefGoogle Scholar
  10. Chastain BK, Chevrier V (2007) Methane clathrate hydrates as a potential source for martian atmospheric methane. Planetary and Space Science 55:1246–1256CrossRefGoogle Scholar
  11. Clancy RT, Muhleman DO, Jakosky BM (1983) Variability of carbon monoxide in the Mars atmosphere. Icarus 55:282–301CrossRefGoogle Scholar
  12. Daniels L, Fuchs G, Thauer RK, Zeikus JG (1977) Carbon monoxide oxidation by methanogenic bacteria. J Bacteriol 132:118–126PubMedPubMedCentralGoogle Scholar
  13. Fajardo-Cavazos P, Waters SM, Schuerger AC, George S, Marois JJ, Nicholson WL (2012) Evolution of Bacillus subtilis to Enhanced Growth at Low Pressure: Up-Regulated Transcription of des-desKR, Encoding the Fatty Acid Desaturase System. Astrobiology 12:258–270CrossRefPubMedGoogle Scholar
  14. Feldman WC, Boynton WV, Tokar RL, Prettyman TH, Gasnault O, Squyres SW, Elphic RC, Lawrence DJ, Lawson SL, Maurice S (2002) Global distribution of neutrons from Mars: Results from Mars Odyssey. Science 297:75–78CrossRefPubMedGoogle Scholar
  15. Fonti S, Marzo GA (2010) Mapping the methane on Mars. Astron Astrophys 512:A51. doi: 10.1051/0004-6361/200913178 CrossRefGoogle Scholar
  16. Formisano V, Atreya S, Encrenaz T, Ignatiev N, Giuranna M (2004) Detection of methane in the atmosphere of Mars. Science 306:1758–1761CrossRefPubMedGoogle Scholar
  17. Gandolfi I, Bertolini V, Ambrosini R, Bestetti G, Franzetti A (2013) Unravelling the bacterial diversity in the atmosphere. Appl Microbiol Biotechnol 97:4727–4736CrossRefPubMedGoogle Scholar
  18. Geminale A, Formisano V, Giuranna M (2008) Methane in Martian atmosphere: average spatial, diurnal, and seasonal behaviour. Planetary and Space Science 56:1194–1203CrossRefGoogle Scholar
  19. Geminale A, Formisano V, Sindoni G (2011) Mapping methane in Martian atmosphere with PFS-MEX data. Planetary and Space Science 59:137–148CrossRefGoogle Scholar
  20. Griffin DW (2004) Terrestrial microorganisms at an altitude of 20,000 m in Earth’s atmosphere. Aerobiologia 20:135–140CrossRefGoogle Scholar
  21. Griffin DW (2008) Non-spore forming eubacteria isolated at an altitude of 20,000 m in Earth’s atmosphere: extended incubation periods needed for culture-based assays. Aerobiologia 24:19–25CrossRefGoogle Scholar
  22. Grimm RE, Harrison KP, Stillman DE (2014) Water budgets of martian recurring slope lineae. Icarus 233:316–327. doi: 10.1016/j.icarus.2013.11.013 CrossRefGoogle Scholar
  23. Haberle RM, McKay CP, Schaeffer J, Cabrol NA, Grin EA, Zent AP, Quinn R (2001) On the possibility of liquid water on present-day Mars. Journal of Geophysical Research: Planets 106(1991-2012):23317–23326CrossRefGoogle Scholar
  24. Hess SL, Henry RM, JE T (1979) The seasonal variation of atmospheric pressure on Mars as affected by the south polar cap. Journal of Geophysical Research: Solid Earth 84(1978–2012):2923–2927CrossRefGoogle Scholar
  25. Hess SL, Ryan JA, Tillman JE, Henry RM, Leovy CB (1980) The annual cycle of pressure on Mars measured by Viking landers 1 and 2. Geophys Res Lett 7:197–200CrossRefGoogle Scholar
  26. Johnson AP, Pratt LM, Vishnivetskaya T, Pfiffner S, Bryan RA, Dadachova E, Whyte L, Radtke K, Chan E, Tronick S (2011) Extended survival of several organisms and amino acids under simulated martian surface conditions. Icarus 211:1162–1178CrossRefGoogle Scholar
  27. Jones WJ, Paynter MJB, Gupta R (1983) Characterization of Methanococcus maripaludis sp. nov., a new methanogen isolated from salt marsh sediment. Arch Microbiol 135:91–97CrossRefGoogle Scholar
  28. Jones EG, Lineweaver CH, Clarke JD (2011) An extensive phase space for the potential martian biosphere. Astrobiology 11:1017–1033CrossRefPubMedGoogle Scholar
  29. Kandler O, Hippe H (1977) Lack of peptidoglycan in the cell walls of Methanosarcina barkeri. Arch Microbiol 113:57–60CrossRefPubMedGoogle Scholar
  30. Kandler O, König H (1978) Chemical composition of the peptidoglycan-free cell walls of methanogenic bacteria. Arch Microbiol 118:141–152CrossRefPubMedGoogle Scholar
  31. Kendrick MG, Kral TA (2006) Survival of methanogens during desiccation: implications for life on Mars. Astrobiology 6:546–551CrossRefPubMedGoogle Scholar
  32. King GM (2015) Carbon monoxide as a metabolic energy source for extremely halophilic microbes: implications for microbial activity in Mars regolith. Proc Natl Acad Sci 112:4465–4470CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kral TA, Altheide TS (2013) Methanogen survival following exposure to desiccation, low pressure and martian regolith analogs. Planetary and Space Science 89:167–171CrossRefGoogle Scholar
  34. Kral TA, Brink KM, Miller SL, McKay CP (1998) Hydrogen consumption by methanogens on the early Earth. Origins of Life and Evolution of Biospheres 28:311–319CrossRefGoogle Scholar
  35. Kral TA, Bekkum CR, McKay CP (2004) Growth of methanogens on a Mars soil simulant. Orig Life Evol Biosph 34:615–626CrossRefPubMedGoogle Scholar
  36. Kral TA, Altheide TS, Lueders AE, Schuerger AC (2011) Low pressure and desiccation effects on methanogens: Implications for life on Mars. Planetary and Space Science 59:264–270CrossRefGoogle Scholar
  37. Kral TA, Birch W, Lavender LE, Virden BT (2014) Potential use of highly insoluble carbonates as carbon sources by methanogens in the subsurface of Mars. Planetary and Space Science 101:181–185. doi: 10.1016/j.pss.2014.07.008 CrossRefGoogle Scholar
  38. Kral TA, Goodhart TH, Harpool JD, Hearnsberger CE, McCracken GL, McSpadden SW (2016) Sensitivity and adaptability of methanogens to perchlorates: Implications for life on Mars. Planetary and Space Science 120:87–95CrossRefGoogle Scholar
  39. Krasnopolsky VA (1993) Photochemistry of the Martian atmosphere (mean conditions). Icarus 101:313–332CrossRefGoogle Scholar
  40. Krasnopolsky VA (2007) Long-term spectroscopic observations of Mars using IRTF/CSHELL: Mapping of O2 dayglow, CO, and search for CH4. Icarus 190:93–102CrossRefGoogle Scholar
  41. Krasnopolsky VA, Feldman PD (2001) Detection of molecular hydrogen in the atmosphere of Mars. Science 294:1914–1917CrossRefPubMedGoogle Scholar
  42. Krasnopolsky VA, Bjoraker GL, Mumma MJ, Jennings DE (1997) High-resolution spectroscopy of Mars at 3.7 and 8 μm: A sensitive search for H2O2, H2CO, HCl, and CH4, and detection of HDO. J Geophys Res 102:6525–6534CrossRefGoogle Scholar
  43. Krasnopolsky VA, Maillard JP, Owen TC (2004) Detection of methane in the martian atmosphere: evidence for life? Icarus 172:537–547CrossRefGoogle Scholar
  44. Lellouch E, Encrenaz T, Phillips T, Falgarone E, Billebaud F (1991) Submillimeter observations of CO in Mars’ atmosphere. Planetary and Space Science 39:209–212CrossRefGoogle Scholar
  45. Lyons JR, Manning C, Nimmo F (2005) Formation of methane on Mars by fluid-rock interaction in the crust. Geophys Res Lett 32Google Scholar
  46. Maguire WC (1977) Martian isotopic ratios and upper limits for possible minor constituents as derived from Mariner 9 infrared spectrometer data. Icarus 32:85–97CrossRefGoogle Scholar
  47. Malin MC, Edgett KS (2000) Evidence for recent groundwater seepage and surface runoff on Mars. Science 288:2330–2335CrossRefPubMedGoogle Scholar
  48. Martin DD, Ciulla RA, Roberts MF (1999) Osmoadaptation in Archaea. Appl Environ Microbiol 65:1815–1825PubMedPubMedCentralGoogle Scholar
  49. Martín-Torres FJ, Zorzano M-P, Valentín-Serrano P, Harri A-M, Genzer M, Kemppinen O, Rivera-Valentin EG, Jun I, Wray J, Madsen MB, Goetz W, McEwen AS, Hardgrove C, Renno N, Chevrier VF, Mischna M, Navarro-González R, Martínez-Frías J, Conrad P, McConnochie T, Cockell C, Berger G, Vasavada AR, Sumner D, Vaniman D (2015) Transient liquid water and water activity at Gale crater on Mars. Nat Geosci 8:357–361CrossRefGoogle Scholar
  50. McCollom TM, Bach W (2009) Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks. Geochim Cosmochim Acta 73:856–875CrossRefGoogle Scholar
  51. McEwen AS, Ojha L, Dundas CM, Mattson SS, Byrne S, Wray JJ, Cull SC, Murchie SL, Thomas N, Gulick VC (2011) Seasonal flows on warm martian slopes. Science 333:740–743CrossRefPubMedGoogle Scholar
  52. McEwen AS, Dundas CM, Mattson SS, Toigo AD, Ojha L, Wray JJ, Chojnacki M, Byrne S, Murchie SL, Thomas N (2014) Recurring slope lineae in equatorial regions of Mars. Nat Geosci 7:53–58CrossRefGoogle Scholar
  53. Mitrofanov I, Anfimov D, Kozyrev A, Litvak M, Sanin A, Tret’yakov V, Krylov A, Shvetsov V, Boynton W, Shinohara C, Hamara D, Saunders RS (2002) Maps of subsurface hydrogen from the high energy neutron detector, Mars Odyssey. Science 297:78–81CrossRefPubMedGoogle Scholar
  54. Morozova D, Möhlmann D, Wagner D (2007) Survival of methanogenic archaea from Siberian permafrost under simulated Martian thermal conditions. Origins of Life and Evolution of Biospheres 37:189–200CrossRefGoogle Scholar
  55. Mumma MJ, Villanueva GL, Novak RE, Hewagama T, Bonev BP, DiSanti MA, Mandell AM, Smith MD (2009) Strong release of methane on Mars in northern summer 2003. Science 323:1041–1045CrossRefPubMedGoogle Scholar
  56. Nair H, Allen M, Anbar AD, Yung YL, Clancy RT (1994) A photochemical model of the Martian atmosphere. Icarus 111:124–150CrossRefPubMedGoogle Scholar
  57. Ni S, Boone DR (1991) Isolation and characterization of a dimethyl sulfide-degrading methanogen, Methanolobus siciliae HI350, from an oil well, characterization of M. siciliae T4/MT, and emendation of M. siciliae. Int J Syst Bacteriol 41:410–416CrossRefPubMedGoogle Scholar
  58. Nicholson WL, Krivushin K, Gilichinsky D, Schuerger AC (2013) Growth of Carnobacterium spp. from permafrost under low pressure, temperature, and anoxic atmosphere has implications for Earth microbes on Mars. Proc Natl Acad Sci 110:666–671CrossRefPubMedGoogle Scholar
  59. O’Brien JM, Wolkin RH, Moench TT, Morgan JB, Zeikus JG (1984) Association of hydrogen metabolism with unitrophic or mixotrophic growth of Methanosarcina barkeri on carbon monoxide. J Bacteriol 158:373–375PubMedPubMedCentralGoogle Scholar
  60. Ojha L, Wilhelm MB, Murchie SL, McEwen AS, Wray JJ, Hanley J, Massé M, Chojnacki M (2015) Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nat Geosci 8:829–832CrossRefGoogle Scholar
  61. Onstott TC, McGown D, Kessler J, Lollar BS, Lehmann KK, Clifford SM (2006) Martian CH4: sources, flux, and detection. Astrobiology 6:377–395CrossRefPubMedGoogle Scholar
  62. Oze C, Sharma M (2005) Have olivine, will gas: Serpentinization and the abiogenic production of methane on Mars. Geophysical Research Letters. doi: 10.1029/2005GL022691 Google Scholar
  63. Rennó NO, Bos BJ, Catling D, Clark BC, Drube L, Fisher D, Goetz W, Hviid SF, Keller HU, Kok JF, Kounaves SP, Leer K, Lemmon M, Madsen MB, Markiewicz WJ, Marshall J, McKay C, Mehta M, Smith M, Zorzano MP, Smith PH, Stoker C, Young SMM (2009) Possible physical and thermodynamical evidence for liquid water at the Phoenix landing site. Journal of Geophysical Research: Planets 1991–2012:114. doi: 10.1029/2009JE003362 Google Scholar
  64. Roberts MF (2004) Osmoadaptation and osmoregulation in Archaea: update 2004. Front Biosci 9:1999–2019CrossRefPubMedGoogle Scholar
  65. Schirmack J, Böhm M, Brauer C, Löhmannsröben H-G, de Vera J-P, Möhlmann D, Wagner D (2014) Laser spectroscopic real time measurements of methanogenic activity under simulated Martian subsurface analog conditions. Planetary and Space Science 98:198–204. doi: 10.1016/j.pss.2013.08.019 CrossRefGoogle Scholar
  66. Schuerger AC, Golden DC, Ming DW (2012) Biotoxicity of Mars soils: 1. Dry deposition of analog soils on microbial colonies and survival under Martian conditions. Planetary and Space Science 72:91–101. doi: 10.1016/j.pss.2012.07.026 CrossRefGoogle Scholar
  67. Schuerger AC, Ulrich R, Berry BJ, Nicholson WL (2013) Growth of Serratia liquefaciens under 7 mbar, 0 degrees C, and CO2-enriched anoxic atmospheres. Astrobiology 13:115–131. doi: 10.1089/ast.2011.0811 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Sears DW, Chittenden JD (2005) On laboratory simulation and the temperature dependence of the evaporation rate of brine on Mars. Geophys Res Lett 32Google Scholar
  69. Smith PH, Tamppari LK, Arvidson RE, Bass D, Blaney D, Boynton WV, Carswell A, Catling DC, Clark BC, Duck T, DeJong E, Fisher D, Goetz W, Gunnlaugsson HP, Hecht MH, Hipkin V, Hoffman J, Hviid SF, Keller HU, Kounaves SP, Lange CF, Lemmon MT, Madsen MB, Markiewicz WJ, Marshall J, McKay CP, Mellon MT, Ming DW, Morris RV, Pike WT, Renno N, Staufer U, Stoker C, Taylor P, Whiteway JA, Zent AP (2009) H2O at the Phoenix landing site. Science 325:58–61CrossRefPubMedGoogle Scholar
  70. Smith DJ, Griffin DW, Schuerger AC (2010) Stratospheric microbiology at 20 km over the Pacific Ocean. Aerobiologia 26:35–46CrossRefGoogle Scholar
  71. Sowers KR, Schreier H (1995) Archaea: A Laboratory Manual: Methanogens. MethanogensGoogle Scholar
  72. Spiga A, Forget F, Dolla B, Vinatier S, Melchiorri R, Drossart P, Gendrin A, Bibring JP, Langevin Y, Gondet B (2007) Remote sensing of surface pressure on Mars with the Mars Express/OMEGA spectrometer: 2. Meteorological maps. Journal of Geophysical Research: Planets 112(1991–2012)Google Scholar
  73. Stillman DE, Michaels TI, Grimm RE, Harrison KP (2014) New observations of martian southern mid-latitude recurring slope lineae (RSL) imply formation by freshwater subsurface flows. Icarus 233:328–341CrossRefGoogle Scholar
  74. Tortora GJ, Funke BR, Case CL (2015) Microbiology: An Introduction, 12th Ed.Google Scholar
  75. Usui T, Alexander CMD, Wang J, Simon JI, Jones JH (2015) Meteoritic evidence for a previously unrecognized hydrogen reservoir on Mars. Earth Planet Sci Lett 410:140–151CrossRefGoogle Scholar
  76. van de Vossenberg JL, Driessen AJ, Konings WN (1998) The essence of being extremophilic: the role of the unique archaeal membrane lipids. Extremophiles 2:163–170CrossRefPubMedGoogle Scholar
  77. Webster CR, Mahaffy PR, Atreya SK, Flesch GJ, Farley KA, Science Team MSL (2013) Low Upper Limit to Methane Abundance on Mars. Science 342:355–357CrossRefPubMedGoogle Scholar
  78. Webster CR, Mahaffy PR, Atreya SK, Flesch GJ, Mischna MA, Meslin P-Y, Farley KA, Conrad PG, Christensen LE, Pavlov AA, Martín-Torres J, Zorzano MP, McConnochie TH, Owen T, Eigenbrode JL, Glavin DP, Steele A, Malespin CA, Archer PD Jr, Sutter B, Coll P, Freissinet C, McKay CP, Moores JE, Schwenzer SP, Bridges JC, Navarro-Gonzalez R, Gellert R, Lemmon MT, Science Team MSL (2015) Mars methane detection and variability at Gale crater. Science 347:415–417Google Scholar
  79. Weiss BP, Yung YL, Nealson KH (2000) Atmospheric energy for subsurface life on Mars? Proc Natl Acad Sci 97:1395–1399CrossRefPubMedPubMedCentralGoogle Scholar
  80. Wray JJ, Ehlmann BL (2011) Geology of possible Martian methane source regions. Planetary and Space Science 59:196–202CrossRefGoogle Scholar
  81. Xun L, Boone DR, Mah RA (1988) Control of the life cycle of Methanosarcina mazei S-6 by manipulation of growth conditions. Appl Environ Microbiol 54:2064–2068PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Arkansas Center for Space and Planetary SciencesUniversity of ArkansasFayettevilleUSA
  2. 2.Department of Biological Sciences, Science and Engineering 601University of ArkansasFayettevilleUSA

Personalised recommendations