Thermodynamics, Disequilibrium, Evolution: Far-From-Equilibrium Geological and Chemical Considerations for Origin-Of-Life Research

This is a preview of subscription content, access via your institution.

References

  1. Abramov O, Mojzsis SJ (2009) Microbial habitability of the hadean earth during the late heavy bombardment. Nature 459:419–422

    CAS  PubMed  Article  Google Scholar 

  2. Abramov O, Kring DA, Mojzsis SJ (2013) The impact environment of the hadean earth. Chemie der Erde-Geochemistry 73(3):227–248

    CAS  Article  Google Scholar 

  3. Arrhenius GO (2003) Crystals and life. Helv Chim Acta 86:1569–1586

    CAS  Article  Google Scholar 

  4. Astumian RD (2007) Adiabatic operation of a molecular machine. Proc Natl Acad Sci 104(50):19715–19718

    CAS  PubMed Central  Article  Google Scholar 

  5. Baaske P, Weinert FM, Duhr S, Lemke KH, Russell MJ, Braun D (2007) Extreme accumulation of nucleotides in simulated hydrothermal pore systems. Proc Natl Acad Sci U S A 104:9346–9351

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. Bally AW, Snelson S (1980) Realms of subsidence. inMiall, a. D., ed. Facts and principles of world petroleum occurrence: Canadian Society of Petroleum Geologists Memoir 6:9–94

    Google Scholar 

  7. Baltscheffsky, H. (1971) Inorganic pyrophosphate and the origin and evolution of biological energy transformation (biological energy transformation origin and evolution, discussing inorganic pyrophosphates precursor to adenosine phosphates as energy carriers). In Chemical Evolution and the Origin of Life, edited by R. Buvet and C. Ponnamperuma, North-Holland Pub. Cy., Amsterdam, pp 466–474

  8. Baltscheffsky H, Persson B (2014) On an early gene for membrane-integral inorganic pyrophosphatase in the genome of an apparently pre-LUCA extremophile, the archaeon Candidatus Korarchaeum cryptofilum. J Mol Evol 78:140–147

    CAS  PubMed  Article  Google Scholar 

  9. Barge LM, Doloboff IJ, White LM, Russell MJ, Kanik I (2012) Characterization of iron-phosphate-silicate chemical garden structures. Langmuir 28:3714–3721

    CAS  PubMed  Article  Google Scholar 

  10. Barge LM, Kee TP, Doloboff IJ, Hampton JM, Ismail M, Pourkashanian M, Zeytounian J, Baum MM, Moss JA, Lin CK, Kidd RD (2014) The fuel cell model of abiogenesis: a new approach to origin-of-life simulations. Astrobiology 14(3):254–270

    PubMed  Article  Google Scholar 

  11. Barge LM, Cardoso SSS, Cartwright JHE, Cooper GJT, Cronin L, De Wit A, Doloboff IJ, Escribano B, Goldstein RE, Haudin F, Jones DEH, Mackay AL, Maselko J, Pagano JJ, Pantaleone J, Russell MJ, Sainz-Díaz CI, Steinbock O, Stone DA, Tanimoto Y, Thomas NL (2015) From chemical gardens to Chemobrionics. Chem Rev 115:8652–8703

    CAS  PubMed  Article  Google Scholar 

  12. Barros SCC, Almenara JM, Deleuil M, Díaz RF, Csizmadia S, Cabrera J, Chaintreuil S, Cameron AC, Hatzes A, Haywood R, Lanza AF (2014) Revisiting the transits of CoRoT-7b at a lower activity level. Astron Astrophys 569:A74

    Article  Google Scholar 

  13. Batista BC, Cruz P, Steinbock O (2014) From hydrodynamic plumes to chemical gardens: the concentrationdependent onset of tube formation. Langmuir 30:9123–9129

    CAS  PubMed  Article  Google Scholar 

  14. Bell EA, Boehnke P, Harrison TM, Mao WL (2015) Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon. Proc Natl Acad Sci 112(47):14518–14521

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. Bernal JD (1960) The problem of stages in biopoesis. In: Aspects of the origin of life, edited by M. Pergamon Press, New York, Florkin, pp. 30–45

    Google Scholar 

  16. Berrisford DJ, Bolm C, Sharpless KB (1995) Ligand-accelerated catalysis. Angewandte Chemie International Edition in English 34(10):1059–1070

    CAS  Article  Google Scholar 

  17. Berta-Thompson ZK, Irwin J, Charbonneau D, Newton ER, Dittmann JA, Astudillo-Defru N, Bonfils X, Gillon M, Jehin E, Stark AA, Stalder B (2015) A rocky planet transiting a nearby low-mass star. Nature 527(7577):204–207

    CAS  PubMed  Article  Google Scholar 

  18. Boltzmann L (1886) Reprinted and translated in: theoretical physics and philosophical problems; selected writings (Vienna circle collection); chap. The second law of thermodynamics. Kluwer D. Reidel publishing Co., Dordrecht, Holland, p. 13–32, 1974

  19. Bounama C, Franck S, von Bloh W (2001) The fate of the Earth’s ocean. Hydrol Earth Syst Sci 5:569–575

    Article  Google Scholar 

  20. Branscomb E, Russell MJ (2013) Turnstiles and bifurcators: the disequilibrium converting engines that put metabolism on the road. Biochim Biophys Acta Bioenergetics 1827:62–78

    CAS  Article  Google Scholar 

  21. Burcar BT, Barge LM, Trail D, Watson EB, Russell MJ, McGown LB (2015) RNA Oligomerization in Laboratory Analogues of Alkaline Hydrothermal Vent Systems. Astrobiology 15(7):509–522. doi:10.1089/ast.2014.1280

    CAS  PubMed  Article  Google Scholar 

  22. Cardoso SSS, McHugh ST (2010) Turbulent plumes with heterogeneous chemical reaction on the surface of small buoyant droplets. J Fluid Mech 642:49–77

    CAS  Article  Google Scholar 

  23. Charbonneau D, Berta ZK, Irwin J, Burke CJ, Nutzman P, Buchhave LA, Lovis C, Bonfils X, Latham DW, Udry S, Murray-Clay RA (2009) A super-earth transiting a nearby low-mass star. Nature 462(7275):891–894

    CAS  PubMed  Article  Google Scholar 

  24. Chatterjee MN, Kay ER, Leigh DA (2006) Beyond switches: ratcheting a particle energetically uphill with a compartmentalized molecular machine. J Am Chem Soc 128(12):4058–4073

  25. Chatzitheodoridis E, Haigh S, Lyon I (2014) A conspicuous clay ovoid in Nakhla: evidence for subsurface hydrothermal alteration on Mars with implications for astrobiology. Astrobiology 14(8):651–693

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Choban ER, Markoski LJ, Wieckowski A, Kenis PAJ (2004) Microfluidic fuel cell based on laminar flow. J Power Sources 128(1):54–60

    CAS  Article  Google Scholar 

  27. Cockell CS (2014) Trajectories of Martian habitability. Astrobiology 14(2):182–203

    PubMed  PubMed Central  Article  Google Scholar 

  28. Cowan, N. B., Abbot, D. S. (2014) Water Cycling Between Ocean and Mantle: Super-Earths Need Not be Waterworlds. arXiv preprint arXiv:1401.0720.

  29. Dasgupta R, Hirschmann MM (2006) Melting in the Earth’s deep upper mantle caused by carbon dioxide. Nature 440(7084):659–662

    CAS  PubMed  Article  Google Scholar 

  30. Dauphas N, Cates NL, Mojzsis SJ, Busigny V (2007) Identification of chemical sedimentary protoliths using iron isotopes in the >3750 Ma Nuvvuagittuq supracrustal belt, Canada. Earth Planet Sci Lett 254(3):358–376

    CAS  Article  Google Scholar 

  31. Degens ET, Ross DA (2013) Hot brines and recent heavy metal deposits in the Red Sea: a geochemical and geophysical account. Springer-Verlag

  32. Denis C, Rybicki KR, Schreider AA, Tomecka-Suchoñ S, Varga P (2011) Length of the day and evolution of the Earth’s core in the geological past. Astronomische Nachrichten 332:24–35

    Article  Google Scholar 

  33. Dones L, Tremaine S (1993) Why Does the Earth Spin Forward? Science 259(5093):350–354

    CAS  PubMed  Article  Google Scholar 

  34. Dorn ED, Nealson KH, Adami C (2011) Monomer abundance distribution patterns as a universal biosignature: examples from terrestrial and digital life. J Mol Evol 72(3):283–295

    CAS  PubMed  Article  Google Scholar 

  35. Draganić IG, Bjergbakke E, Draganić ZD, Sehested K (1991) Decomposition of ocean waters by potassium-40 radiation 3800 Ma ago as a source of oxygen and oxidizing species. Precambrian Res 52(3–4):337–345

    Article  Google Scholar 

  36. Dragomir D, Matthews JM, Eastman JD, Cameron C, Howard AW, Guenther DB, Kuschnig R, Moffat AF, Rowe JF, Rucinski SM, Sasselov D (2013) MOST detects transits of HD 97658b, a warm, likely volatile-rich super-Earth. Astrophys J Lett 772(1):L2

    Article  Google Scholar 

  37. Dressing CD, Charbonneau D, Dumusque X, Gettel S, Pepe F, Cameron AC, Latham DW, Molinari E, Affer L, Bonomo AS, Buchhave LA (2015) The mass of Kepler-93b and the composition of terrestrial planets. Astrophys J 800(2):135

    Article  CAS  Google Scholar 

  38. Ducluzeau A-L, van Lis R, Duval S, Schoepp-Cothenet B, Russell MJ, Nitschke W (2009) Was nitric oxide the first strongly oxidizing terminal electron sink. Trends Biochem Sci 34:9–15

    CAS  PubMed  Article  Google Scholar 

  39. Ducluzeau AL, Schoepp-Cothenet B, Baymann F, Russell MJ, Nitschke W (2014) Free energy conversion in the LUCA: quo vadis? Biochim Biophys Acta Bioenergetics 1837(7):982–988

    CAS  Article  Google Scholar 

  40. Dumusque X, Bonomo AS, Haywood RD, Malavolta L, Ségransan D, Buchhave LA, Cameron AC, Latham DW, Molinari E, Pepe F, Udry S (2014) The Kepler-10 planetary system revisited by HARPS-N: A hot rocky world and a solid Neptune-mass planet. Astrophys J 789(2):154

    Article  Google Scholar 

  41. Eck RV, Dayhoff MO (1968) Evolution of the structure of ferredoxin based on living relics of primitive amino acid sequences. Science 152:363–366

    Article  Google Scholar 

  42. Elkins-Tanton LT (2008) Linked magma ocean solidification and atmospheric growth for earth and Mars. Earth Planet Sci Lett 271:181–191

    CAS  Article  Google Scholar 

  43. Elsila JE, Glavin DP, Dworkin JP (2009) Cometary glycine detected in samples returned by stardust. Meteorit Planet Sci 44(9):1323–1330

    CAS  Article  Google Scholar 

  44. Fogg MJ (1992) An estimate of the prevalence of biocompatible and habitable planets. J Br Interplanet Soc 45(1):3–12

    CAS  PubMed  Google Scholar 

  45. Fressin F, Torres G, Charbonneau D, Bryson ST, Christiansen J, Dressing CD, Jenkins JM, Walkowicz LM, Batalha NM (2013) The false positive rate of Kepler and the occurrence of planets. Astrophys J 766(2):81

    Article  Google Scholar 

  46. Frost DJ, Mann U, Asahara Y, Rubie DC (2008) The redox state of the mantle during and just after core formation. Philos Trans R Soc A366:4315–4337

    Article  CAS  Google Scholar 

  47. Fuchs, G. (1989) Alternative pathways of autotrophic CO2 fixation. In Autotrophic Bacteria, edited by H.G. Schlegel and B. Bowen, Science Technology, Madison, pp 365–382.

  48. Genda H (2016) Origin of Earth’s oceans: an assessment of the total amount, history and supply of water. Geochem J 50(1):27–42

    CAS  Article  Google Scholar 

  49. Gillon M, Demory BO, Benneke B, Valencia D, Deming D, Seager S, Lovis C, Mayor M, Pepe F, Queloz D, Ségransan D (2012) Improved precision on the radius of the nearby super-Earth 55 Cnc e. Astron Astrophys 539:A28

    Article  Google Scholar 

  50. Goldschmidt VM (1937) The principles of distribution of chemical elements in minerals and rocks. J Chem Soc 1937:655–673

    Article  Google Scholar 

  51. Goldschmidt VM (1952) Geochemical aspects of the origin of complex organic molecules on the earth, as precursors to life. New Biology 12:97–105

    Google Scholar 

  52. Guitreau M, Blichert-Toft J, Mojzsis SJ, Roth AS, Bourdon B, Cates NL, Bleeker W (2014) Lu–Hf isotope systematics of the hadean–Eoarchean Acasta gneiss complex (northwest territories, Canada). Geochim Cosmochim Acta 135:251–269

    CAS  Article  Google Scholar 

  53. Hand K, Carlson RW, Chyba CF (2007) Energy, chemical disequilibrium, and geological constraints on Europa. Astrobiology 7(6):1006–1022

    CAS  PubMed  Article  Google Scholar 

  54. Hansen HCB, Gulberg S, Erbs M, Koch CB (2001) Kinetics of nitrate reduction by green rusts: effects of interlayer anion and Fe(II): Fe(III) ratio. Appl Clay Sci 18:81–91

    CAS  Article  Google Scholar 

  55. Harrison TM (2009) The hadean crust: evidence from >4 Ga zircons. Annu Rev Earth Planet Sci 37:479–505

    CAS  Article  Google Scholar 

  56. Harrison TM, Schmitt AK, McCulloch MT, Lovera OM (2008) Early (≥ 4.5 Ga) formation of terrestrial crust: Lu–Hf, d18O, and Ti thermometry results for hadean zircons. Earth Planet Sci Lett 268(3):476–486

    CAS  Article  Google Scholar 

  57. Haywood RD, Cameron AC, Queloz D, Barros SCC, Deleuil M, Fares R, Gillon M, Lanza AF, Lovis C, Moutou C, Pepe F (2014) Planets and stellar activity: hide and seek in the CoRoT-7 system. Mon Not R Astron Soc 443(3):2517–2531

    Article  Google Scholar 

  58. He Y, Li M, Perumal V, Feng X, Fang J, Xie J, Sievert SM, Wang F (2016) Genomic and enzymatic evidence for acetogenesis among multiple lineages of the archaeal phylum Bathyarchaeota widespread in marine sediments. Nature Microbiology 16035. doi:10.1038/NMICROBIOL.2016.35

  59. Herschy B, Whicher A, Camprubi E, Watson C, Dartnell L, Ward J, Evans JRG, Lane N (2014) An origin-of-life reactor to simulate alkaline hydrothermal vents. J Mol Evol 79:213–227. doi:10.1007/s00239-014-9658-4

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. Hess HH (1962) History of ocean basins. In Petrologic studies, a. E. J. Engel et al., eds. Geological Society of America. N Y 4:599–620

    Google Scholar 

  61. Hess HH (1965) Mid-oceanic ridges and tectonics of the sea-floor. Submarine geology and geophysics, Colston Papers 17:317–334

    Google Scholar 

  62. Hirschmann MM, Tenner T, Aubaud C, Withers AC (2009) Dehydrationmelting of nominally anhydrous mantle: the primacy of partitioning. Phys Earth Planet Int 176:54–68

    CAS  Article  Google Scholar 

  63. Hoffman P, Schrag D (2002) The snowball earth hypothesis: testing the limits of global change. Terra Nov. 14:129–155

  64. Hoffmann PM (2012) Lifes ratchet: how molecular machines extract order from chaos. Basic Books

  65. Höning D, Hansen-Goos H, Airo A, Spohn T (2014) Biotic vs. abiotic earth: a model for mantle hydration and continental coverage. Planetary and Space Science 98:5–13

    Article  Google Scholar 

  66. Howard AW, Marcy GW, Bryson ST, Jenkins JM, Rowe JF, Batalha NM, Borucki WJ, Koch DG, Dunham EW, Gautier TN III, Van Cleve J (2012) Planet occurrence within 0.25 AU of solar-type stars from Kepler. Astrophys J Suppl Ser 201(2):15

    Article  CAS  Google Scholar 

  67. Howard AW, Sanchis-Ojeda R, Marcy GW, Johnson JA, Winn JN, Isaacson H, Fischer DA, Fulton BJ, Sinukoff E, Fortney JJ (2013) A rocky composition for an earth-sized exoplanet. Nature 503(7476):381–384

    CAS  PubMed  Article  Google Scholar 

  68. Hsu H-W, Postberg F, Sekine Y, Shibuya T, Kempf S, Horányi M, Juhász A, Altobelli N, Suzuki K, Masaki Y, Kuwatani T, Tachibana S, Sirono S, Moragas-Klostermeyer G, Srama R (2015) Ongoing hydrothermal activities within Enceladus. Nature 519:207–210. doi:10.1038/nature14262

    CAS  PubMed  Article  Google Scholar 

  69. Huang SS (1959) Occurrence of life in the universe. Am Sci 47:397–402

    Google Scholar 

  70. Huber C, Wächtershäuser G (2003) Primordial reductive amination revisited. Tetrahedron Lett 44(8):1695–1697

    CAS  Article  Google Scholar 

  71. Jacobsen EN, Marko I, Mungall WS, Schroeder G, Sharpless KB (1988) Asymmetric dihydroxylation via ligand-accelerated catalysis. J Am Chem Soc 110(6):1968–1970

    CAS  Article  Google Scholar 

  72. Kaltenegger L, Sasselov D (2011) Exploring the habitable zone for Kepler planetary candidates. Astrophys J 736:L25

    Article  Google Scholar 

  73. Kaster A-K, Moll J, Parey K, Thauer RK (2011) Coupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea. Proc Natl Acad Sci U S A 108:2981–2986

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. Kasting JF (1990) Bolide impacts and the oxidation state of carbon in the Earth’s early atmosphere, Orig. Life 20:199–231

    CAS  Google Scholar 

  75. Kasting JF (1993) Earth’s earliest atmosphere. Science 259:920–926

    CAS  PubMed  Article  Google Scholar 

  76. Kjeang E, Djilali N, Sinton D (2009) Microfluidic fuel cells: a review. J Power Sources 186:353–369

    CAS  Article  Google Scholar 

  77. Kramers HA (1940) Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7(4):284–304

    CAS  Article  Google Scholar 

  78. Kreysing M, Keil L, Lanzmich S, Braun D (2015) Heat flux across an open pore enables the continuous replication and selection of oligonucleotides towards increasing length. Nat Chem 7(3):203–208

    CAS  PubMed  Article  Google Scholar 

  79. Krissansen-Totton J, Bergsman DS, Catling DC (2016) On detecting biospheres from thermodynamic disequilibrium in planetary atmospheres. Astrobiology 16(1):39–67 ArXiv:1503.08249v1 [astro-ph.EP]

    CAS  PubMed  Article  Google Scholar 

  80. Kurland CG (2010) The RNA dreamtime. BioEssays 32(10):866–871

    CAS  PubMed  Article  Google Scholar 

  81. Lane N (2010) Why are cells powered by proton gradients? Nature Ed 3:18

    Google Scholar 

  82. Lane N, Allen JF, Martin W (2010) How did LUCA make a living? Chemiosmosis in the origin of life. BioEssays 32(4):271–280

    CAS  PubMed  Article  Google Scholar 

  83. Lenton T, Watson A (2004) Biotic enhancement of weathering, atmospheric oxygen and carbon dioxide in the Neoproterozoic. Geophys Res Lett 31:5

    Article  CAS  Google Scholar 

  84. Line MR, Yung Y (2013) A systematic retrieval analysis of secondary eclipse spectra. III. Diagnosting chemical disequilibrium in planetary atmospheres. Astrophys J 779(1):3

    Article  CAS  Google Scholar 

  85. Lovelock JE (1965) A physical basis for life detection experiments. Nature 207:568–570

    CAS  PubMed  Article  Google Scholar 

  86. Lovelock JE (1975) Thermodynamics and the recognition of alien biospheres. Proc Roy Soc Lond B 189:167–181

    CAS  Article  Google Scholar 

  87. Ludwig KA, Shen CC, Kelley DS, Cheng H, Edwards RL (2011) U–Th systematics and 230 Th ages of carbonate chimneys at the lost City hydrothermal field. Geochim Cosmochim Acta 75(7):1869–1888

    CAS  Article  Google Scholar 

  88. Maas R, Kinny PD, Williams I, Froude DO, Compston W (1992) The Earth’s oldest known crust: a geochronological and geochemical study of 3900–4200 Ma old detrital zircons from Mt. Narryer and Jack Hills, Western Australia. Geochim. Cosmochim. Acta 56:1281–1300

    CAS  Google Scholar 

  89. Maher KA, Stevenson DJ (1988) Impact frustration of the origin of life. Nature 331:612–614

    CAS  PubMed  Article  Google Scholar 

  90. Manning CE, Mojzsis SJ, Harrison TM (2006) Geology, age and origin of supracrustal rocks at rosingAkilia, West Greenland. Am J Sci 306:303–366

    CAS  Article  Google Scholar 

  91. Martin RS, Mather TA, Pyle DM (2007) Volcanic emissions and the early earth atmosphere. Geochim Cosmochim Acta 71:3673–3685

    CAS  Article  Google Scholar 

  92. Martin, W. F., Neukirchen, S. & Sousa, F. L. (2015) Early Life. In Microbial Evolution under Extreme Conditions. Walter de Gruyter GmbH & Co KG pp. 171–184

  93. McGlynn SE, Kanik I, Russell MJ (2012) Modification of simulated hydrothermal iron sulfide chimneys by RNA and peptides. Philos Trans R Soc Lond A: Phys Sci 370:1–16

    Article  CAS  Google Scholar 

  94. Menou K (2015) Climate stability of habitable earth-like planets. Earth Planet Sci Lett 429:20–24

    CAS  Article  Google Scholar 

  95. Mielke RE, Robinson KJ, White LM, McGlynn SE, McEachern K, Bhartia R, Kanik I, Russell MJ (2011) Iron-sulfide-bearing chimneys as potential catalytic energy traps at life’s emergence. Astrobiology 11:933–950

    CAS  PubMed  Article  Google Scholar 

  96. Miguel Y, Brunini A (2010) Planet formation: statistics of spin rates and obliquities of extrasolar planets. MNRAS 406(3):1935–1943

    Google Scholar 

  97. Mojzsis SJ, Arrhenius G, McKeegan KD, Harrison TM, Nutman AP, Friend CRL (1996) Evidence for life on earth before 3,800 million years ago. Nature 384(6604):55–59

    CAS  PubMed  Article  Google Scholar 

  98. Mojzsis SJ, Harrison TM, Pidgeon RT (2001) Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4300 Myr ago. Nature 409:178–181

    CAS  PubMed  Article  Google Scholar 

  99. Mojzsis SJ, Coath CD, Greenwood JP, McKeegan KD, Harrison TM (2003) Mass-independent isotope effects in Archean (2.5 to 3.8 Ga) sedimentary sulfides determined by ion microprobe analysis. Geochim Cosmochim Acta 67(9):1635–1658

    CAS  Article  Google Scholar 

  100. Mulkidjanian AY, Galperin MY, Koonin EV (2009) Co-evolution of primordial membranes and membrane proteins. Trends Biochem Sci 34(4):206–215

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  101. Nakamura R, Takashima T, Kato S, Takai K, Yamamoto M, Hashimoto K (2010) Electrical current generation across a black smoker chimney. Angew Chem Int Ed 49(42):7692–7694

    CAS  Article  Google Scholar 

  102. Narayanan SR, Haines B, Soler J, Valdez TI (2011) Electrochemical conversion of carbon dioxide to formate in alkaline polymer electrolyte membrane cells. J Electrochem Soc 158:A167–A173

    CAS  Article  Google Scholar 

  103. Nelson BE, Ford EB, Wright JT, Fischer DA, von Braun K, Howard AW, Payne MJ, Dindar S (2014) The 55 Cancri planetary system: fully self-consistent N-body constraints and a dynamical analysis. Mon Not R Astron Soc 441(1):442–451

    Article  Google Scholar 

  104. Nitschke W, Russell MJ (2010) Just like the universe the emergence of life had high enthalpy and low entropy beginnings. Journal of Cosmology 10:3200–3216

    Google Scholar 

  105. Nitschke W, Russell MJ (2013) Beating the acetyl coenzyme-a pathway to the origin of life. Phil. Trans. R. Soc. Lond. B. Biol. Sci. 368:20120. doi:10.1098/rstb.2012.0258

    Article  CAS  Google Scholar 

  106. Nitschke W, McGlynn SE, Milner-White EJ, Russell MJ (2013) On the antiquity of metalloenzymes and their substrates in bioenergetics. Biochim. Biophys. Acta, Bioenergetics 1827:871–881

    CAS  Article  Google Scholar 

  107. Novikov Y, Copley SD (2013) Reactivity landscape of pyruvate under simulated hydrothermal vent conditions. Proc Natl Acad Sci U S A 110:13283–13288

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  108. Nutman AP, Friend CRL, Paxton S (2009) Detrital zircon sedimentary provenance ages for the Eoarchaean Isua supracrustal belt southern West Greenland: juxtaposition of a ca. 3700 Ma juvenile arc assemblage against an older complex with 3920–3800 Ma components. Precambrian Res 172:212–233

    CAS  Article  Google Scholar 

  109. Nutman AP, Friend CR, Bennett VC, Wright D, Norman MD (2010) 3700 Ma pre-metamorphic dolomite formed by microbial mediation in the Isua supracrustal belt (W. Greenland): simple evidence for early life? Precambrian Res 183(4):725–737

    CAS  Article  Google Scholar 

  110. Ohtsuki K, Ida S (1998) Planetary rotation by accretion of planetesimals with nonuniform spatial distribution formed by the planet's gravitational perturbation. Icarus 131(2):393–420

    Article  Google Scholar 

  111. Papineau D, Mojzsis SJ (2006) Mass-independent fractionation of sulfur isotopes in sulfides from the pre-3770 Ma Isua Supracrustal Belt, West Greenland. Geobiology 4(4):227–238

    CAS  Article  Google Scholar 

  112. Papineau DMSJ, Mojzsis SJ, Karhu JA, Marty B (2005) Nitrogen isotopic composition of ammoniated phyllosilicates: case studies from Precambrian metamorphosed sedimentary rocks. Chem Geol 216(1):37–58

    CAS  Article  Google Scholar 

  113. Pepe F, Cameron AC, Latham DW, Molinari E, Udry S, Bonomo AS, Buchhave LA, Charbonneau D, Cosentino R, Dressing CD, Dumusque X (2013) An earth-sized planet with an earth-like density. Nature 503(7476):377–380

    CAS  PubMed  Article  Google Scholar 

  114. Pizzarello S, Cronin JR (2000) Non-racemic amino acids in the Murray and Murchison meteorites. Geochim Cosmochim Acta 64(2):329–338

    CAS  PubMed  Article  Google Scholar 

  115. Prigogine I (1977) Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order through Fluctuations, 1 edn. Wiley, New York

    Google Scholar 

  116. Rickard D, Butler IB, Oldroyd A (2001) A novel iron sulphide mineral switch and its implications for Earth and planetary science. Earth Planet Sci Lett 189:85–91

    CAS  Article  Google Scholar 

  117. Rosing MT (1999) 13C-depleted carbon microparticles in >3700-Ma Sea-floor sedimentary rocks from West Greenland. Science 283:674–676

    CAS  PubMed  Article  Google Scholar 

  118. Rosing MT, Bird DK, Sleep NH, Glassley W, Albarede F (2006) The rise of continents—an essay on the geologic consequences of photosynthesis. Palaeogeogr Palaeoclimatol Palaeoecol 232(2):99–113

    Article  Google Scholar 

  119. Roth AS, Bourdon B, Mojzsis SJ, Touboul M, Sprung P, Guitreau M, Blichert-Toft J (2013) Inherited 142Nd anomalies in Eoarchean protoliths. Earth Planet Sci Lett 361:50–57

    CAS  Article  Google Scholar 

  120. Rubie DC, Frost DJ, Mann U, Asahara Y, Nimmo F, Tsuno K, Kegler P, Holzheid A, Palme H (2011) Heterogeneous accretion, composition and core–mantle differentiation of the earth. Earth Planet Sci Lett 301(1):31–42

    CAS  Article  Google Scholar 

  121. Russell MJ, Hall AJ (1997) The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J Geol Soc Lond 154:377–402

    CAS  Article  Google Scholar 

  122. Russell MJ, Daniel RM, Hall AJ, Sherringham J (1994) A hydrothermally precipitated catalytic iron sulphide membrane as a first step toward life. J Mol Evol 39:231–243

    CAS  Article  Google Scholar 

  123. Russell MJ, Hall AJ, Mellersh AR (2003) On the dissipation of thermal and chemical energies on the early earth: the onsets of hydrothermal convection, chemiosmosis, genetically regulated metabolism and oxygenic photosynthesis. In: "natural and laboratory-simulated thermal geochemical processes" R, Ikan edn. Kluwer Academic Publishers pp, Dordrecht, pp. 325–388

    Google Scholar 

  124. Russell MJ, Nitschke W, Branscomb E (2013) The inevitable journey to being. Phil Trans R Soc Lond B Biol Sci 368:20120254. doi:10.1098/rstb.2012.0254

    Article  CAS  Google Scholar 

  125. Russell MJ, Barge LM, Bhartia R, Bocanegra D, Bracher PJ, Branscomb E, Kidd R, McGlynn SE, Meier DH, Nitschke W, Shibuya T, Vance S, White L, Kanik I (2014) The drive to life on wet and icy worlds. Astrobiology 14:308–343. doi:10.1089/ast.2013.1110

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  126. Sagan C, Reid Thompson W, Carlson R, Gurnett D, Hord C (1993) A search for life on earth from the Galileo spacecraft. Nature 365:715–721

    CAS  PubMed  Article  Google Scholar 

  127. Schidlowski M (1988) A 3800-million-year isotopic record of life from carbon in sedimentary rocks. Nature 333:313–318

    CAS  Article  Google Scholar 

  128. Schoepp-Cothenet B, van Lis R, Philippot P, Magalon A, Russell MJ, Nitschke W (2012) The ineluctable requirement for the trans-iron elements molybdenum and/or tungsten in the origin of life. Nat Sci Rep, 2:263. doi:10.1038/srep00263

    Google Scholar 

  129. Schoepp-Cothenet B, van Lis R, Atteia A, Baymann F, Capowiez L, Ducluzeau AL, Duval S, ten Brink F, Russell MJ, Nitschke W (2013) On the universal core of bioenergetics. Biochim Biophys Acta Bioenergetics 1827(2):79–93

    CAS  Article  Google Scholar 

  130. Schrödinger, E. (1967) What Is Life? [With Forward by Penrose] Cambridge Univ Press.

  131. Schwartzman, D. and Lineweaver, C. (2005) Temperature, Biogenesis, and Biospheric Self-Organization. Chapter 16 in Non-equilibrium Thermodynamics and the Production of Entropy, Kleidon, A., and Lorenz, R. D. (Eds.). Non-equilibrium thermodynamics and the production of entropy: life, earth, and beyond. Springer Science & Business Media. 207–221.

  132. Shock EL (1992) Chemical environments of submarine hydrothermal systems. Orig Life Evol Biosph 22:67–107

    CAS  PubMed  Article  Google Scholar 

  133. Simoncini E, Virgo N, Kleidon A (2013) Quantifying drivers of chemical disequilibrium: theory and application to methane in the Earth’s atmosphere. Earth System Dynamics 4:1–15

    Article  Google Scholar 

  134. Simoncini, E., Grassi, T., Brucato, J. R. (2015) Disequilibrium in planetary atmospheres: a first calculation for Earth using KROME, submitted to OLEB.

  135. Sleep NH, Bird DK, Pope E (2012) Paleontology of Earth’s mantle. Annu Rev Earth Planet Sci 40:277–300

    CAS  Article  Google Scholar 

  136. Sojo V, Herschy B, Whicher A, Camprubí E, Lane N (2016) The origin of life in alkaline hydrothermal vents. Astrobiology 16(2):181–197

    CAS  PubMed  Article  Google Scholar 

  137. Szent-Györgyi A (1979) The living state and cancer, IN: Submolecular biology and cancer. In: Ciba Foundation Symposium 67. Excerpta Medica pp, New York, pp. 3–18

    Google Scholar 

  138. Trail D, Watson EB, Tailby ND (2011) The oxidation state of hadean magmas and implications for early Earth’s atmosphere. Nature 480:79–82

    CAS  PubMed  Article  Google Scholar 

  139. Trail D, Watson EB, Tailby ND (2012) Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas. Geochim Cosmochim Acta 97:70–87

    CAS  Article  Google Scholar 

  140. Trolard F, Bourrié G (2012) Fougerite a natural layered double hydroxide in gley soil: habitus, structure, and some properties. In: Clay minerals in nature: their characterization, modification and application, edited by M. Valaskova and G.S. Martynkova, InTech, Rijeka, Croatia, pp. 171–188

    Google Scholar 

  141. Turner JS (1979) Buoyancy effects in fluids. Cambridge University Press

  142. Ueno Y, Yurimoto H, Yoshioka H, Komiya T, Maruyama S (2002) Ion microprobe analysis of graphite from ca. 3.8 Ga metasediments, Isua supracrustal belt, West Greenland: relationship between metamorphism and carbon isotopic composition. Geochim Cosmochim Acta 66(7):1257–1268

    CAS  Article  Google Scholar 

  143. Underwood DR, Jones BW, Sleep PN (2003) The evolution of habitable zones during stellar lifetimes and its implications on the search for extraterrestrial life. Int J Astrobiol 2:289

    Article  Google Scholar 

  144. Vance S, Harnmeijer J, Kimura J, Hussmann H, Demartin B, Brown JM (2007) Hydrothermal systems in small ocean planets. Astrobiology 7(6):987–1005

    CAS  PubMed  Article  Google Scholar 

  145. Vladilo G, Murante G, Silva L, Provenzale A, Ferri G, Ragazzini G (2013) The habitable zone of earth-like planets with different levels of atmospheric pressure. ApJ 767(1):65

    Article  Google Scholar 

  146. Wade J, Wood BJ (2005) Core formation and the oxidation state of the Earth. Earth Planet Sci Lett 236(1-2):78–95

    CAS  Article  Google Scholar 

  147. Wald G (1962) Life in the second and third periods; or why phosphorous and Sulphur for high energy bonds? In: Kasha M, Pullman B (eds) Horizons in biochemistry. Academic Press, New York, pp. 127–141

    Google Scholar 

  148. Wang W, Song Y, Wang X, Yang Y, Liu X (2015) Alpha-Oxo Acids Assisted Transformation of FeS to Fe3S4 at Low Temperature: Implications for Abiotic, Biotic, and Prebiotic Mineralization. Astrobiology 15(12):1043–1051

    CAS  PubMed  Article  Google Scholar 

  149. Webster CR, Mahaffy PR, Atreya SK, Flesch GJ, Mischna MA, Meslin PY, Battalio M (2014) Mars methane detection and variability at gale crater. Science 1261713

  150. Westheimer FH (1987) Why nature chose phosphates. Science 235(4793):1173–1178

    CAS  PubMed  Article  Google Scholar 

  151. Wetherill GW (1985) Asteroidal source of ordinary chondrites. Meteoritics 20:1–22

    Article  Google Scholar 

  152. White LM, Bhartia R, Stucky GD, Kanik I, Russell MJ (2015) Mackinawite and greigite in ancient alkaline hydrothermal chimneys: identifying potential key catalysts for emergent life. Earth Planet Sci Lett 430:105–114

    CAS  Article  Google Scholar 

  153. Wicken JS (1987) Evolution. Thermodynamics and Information Oxford University Press

  154. Wilde, S.A., Valley, J.W., Peck, W.H., and Graham, C.M. (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 gyr ago: Nature, v. 409, p. 175–178.

  155. Williams RJP (1961) Functions of chains of catalysts. J Theor Biol 1:1–13

    CAS  PubMed  Article  Google Scholar 

  156. Williams RJP (1965) Electron migration in iron compounds. In: San Pietro A (ed) Non-Heme iron proteins: role in energy conversion, The Antioch Press. Yellow Springs, Ohio, pp. 7–22

    Google Scholar 

  157. Wood BJ, Bryndzia LT, Johnson KE (1990) Mantle oxidation state and its relation to tectonic environment and fluid speciation. Science 248:337–345

    CAS  PubMed  Article  Google Scholar 

  158. Wood BJ, Walter MJ, Wade J (2006) Accretion of the earth and segregation of its core. Nature 441:825–833

    CAS  PubMed  Article  Google Scholar 

  159. Xing GF, Wang XL, Wan Y, Chen ZH, Jiang Y, Kitajima K, Ushikubo T, Gopon P (2014) Diversity in early crustal evolution: 4100 [emsp14] Ma zircons in the Cathaysia block of southern China. Scientific Reports 4

  160. Yamaguchi A, Inuzuka R, Takashima T, Hayashi T, Hashimoto K, Nakamura R (2014a) Regulating proton-coupled electron transfer for efficient water splitting by manganese oxides at neutral pH Nature communications:5

  161. Yamaguchi A, Yamamoto M, Takai K, Ishii T, Hashimoto K, Nakamura R (2014b) Electrochemical CO2 reduction by Ni-containing iron sulfides: how is CO2 electrochemically reduced at bisulfide-bearing deep-sea hydrothermal precipitates? Electrochim Acta 141(20):311–318. doi:10.1016/j.electacta.2014.07.078

  162. Yung YL, McElroy MB (1979) Fixation of nitrogen in the prebiotic atmosphere. Science 203:1002–1004

    CAS  PubMed  Article  Google Scholar 

  163. Zhang C, Dehoff K, Hess N, Oostrom M, Wietsma TW, Valocchi AJ, Fouke BW, Werth CJ (2010) Pore-Scale Study of Transverse Mixing Induced CaCO3 Precipitation and Permeability Reduction in a Model Subsurface Sedimentary System. Environ Sci Technol 44(20):7833–7838

    CAS  PubMed  Article  Google Scholar 

  164. Zsom A, Seager S, De Wit J (2013) Toward the minimum inner edge distance of the habitable zone. Astrophys J 778:109

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Earth-Life Science Institute of the Tokyo Institute of Technology for supporting and hosting the TDE Focus Group meeting on which this publication is based. The Thermodynamics, Disequilibrium, Evolution (TDE) Focus Group is supported by the NASA Astrobiology Institute (NAI). Parts of this work were carried out at the Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration; LMB and MJR are supported by NAI (Icy Worlds). ES thanks the ORIGINS COST Action (TD1308) for the STSM Reference Number: COST-STSM-TD1308-26973. ES is supported by Agreement ASI/INAF 2015 - 002 - R.O. JHEC acknowledges the financial support of the Spanish MINCINN project FIS2013-48444-C2-2-P. © 2016, all rights reserved.

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. M. Barge.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barge, L.M., Branscomb, E., Brucato, J.R. et al. Thermodynamics, Disequilibrium, Evolution: Far-From-Equilibrium Geological and Chemical Considerations for Origin-Of-Life Research. Orig Life Evol Biosph 47, 39–56 (2017). https://doi.org/10.1007/s11084-016-9508-z

Download citation

Keywords

  • Far-from-equilibrium thermodynamics
  • Life origins
  • Geochemical disequilibrium
  • Hydrothermal vents
  • Early earth
  • Habitability
  • Chemiosmosis
  • Self-organization
  • Laboratory simulation