The Porphobilinogen Conundrum in Prebiotic Routes to Tetrapyrrole Macrocycles

Abstract

Attempts to develop a credible prebiotic route to tetrapyrroles have relied on enzyme-free recapitulation of the extant biosynthesis, but this process has foundered from the inability to form the pyrrole porphobilinogen (PBG) in good yield by self-condensation of the precursor δ-aminolevulinic acid (ALA). PBG undergoes robust oligomerization in aqueous solution to give uroporphyrinogen (4 isomers) in good yield. ALA, PBG, and uroporphyrinogen III are universal precursors to all known tetrapyrrole macrocycles. The enzymic formation of PBG entails carbon-carbon bond formation between the less stable enolate/enamine of one ALA molecule (3-position) and the carbonyl/imine (4-position) of the second ALA molecule; without enzymes, the first ALA reacts at the more stable enolate/enamine (5-position) and gives the pyrrole pseudo-PBG. pseudo-PBG cannot self-condense, yet has one open α-pyrrole position and is proposed to be a terminator of oligopyrromethane chain-growth from PBG. Here, 23 analogues of ALA have been subjected to density functional theoretical (DFT) calculations, but no motif has been identified that directs reaction at the 3-position. Deuteriation experiments suggested 5-(phosphonooxy)levulinic acid would react preferentially at the 3- versus 5-position, but a hybrid condensation with ALA gave no observable uroporphyrin. The results suggest efforts toward a biomimetic, enzyme-free route to tetrapyrroles from ALA should turn away from structure-directed reactions and focus on catalysts that orient the two aminoketones to form PBG in a kinetically controlled process, thereby avoiding formation of pseudo-PBG.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Aylward N, Bofinger N (2005) Possible origin for porphin derivatives in prebiotic chemistry—a computational study. Orig Life Evol Biosph 35:345–368

    CAS  Article  PubMed  Google Scholar 

  2. Bali S, Palmer DJ, Schroeder S, Ferguson SJ, Warren MJ (2014) Recent advances in the biosynthesis of modified tetrapyrroles: the discovery of an alternative pathway for the formation of heme and heme d 1. Cell Mol Life Sci 71:2837–2863

    CAS  Article  PubMed  Google Scholar 

  3. Battersby AR (1985) The Bakerian lecture, 1984. Biosynthesis of the pigments of life. Proc R Soc Lond B 225:1–26

    CAS  Article  PubMed  Google Scholar 

  4. Battersby AR, Fookes CJR, Matcham GWJ, McDonald E (1980) Biosynthesis of the pigments of life: formation of the macrocycle. Nature 285:17–21

    CAS  Article  PubMed  Google Scholar 

  5. Bean GP (1990) The synthesis of 1H-Pyrroles. In: Jones RA (ed) Pyrroles, part 1. The synthesis and the physical and chemical aspects of the pyrrole ring. Wiley, New York, pp 105–294

    Google Scholar 

  6. Bobal P, Neier R (1997) The chemical synthesis of porphobilinogen an important intermediate of the biosynthesis of the “pigments of life”. Trends Org Chem 6:125–144

    CAS  Google Scholar 

  7. Butler AR, George S (1992) The nonenzymatic cyclic dimerisation of 5-aminolevulinic acid. Tetrahedron 48:7879–7886

    CAS  Article  Google Scholar 

  8. Carapellucci PA, Mauzerall D (1975) Photosynthesis and porphyrin excited state redox reactions. Ann N Y Acad Sci 244:214–238

    CAS  Article  PubMed  Google Scholar 

  9. Chandrashaker V, Taniguchi M, Ptaszek M, Lindsey JS (2012) Competing Knorr and Fischer—Fink pathways to pyrroles in neutral aqueous solution. Tetrahedron 68:6957–6967

    CAS  Article  Google Scholar 

  10. Chaperon AR, Bertschy H, Franz-Schrumpf A-L, Hugelet B, Neels A, Stoeckli-Evans H, Neier R (2003) The synthesis of a pyrazol analogon of porphobilinogen with the help of the Mukaiyama aldol reaction. Chimia 57:601–606

    CAS  Article  Google Scholar 

  11. Cirrincione G, Almerico AM, Aiello E, Dattolo G (1992) Aminopyrroles. In: Jones RA (ed) Pyrroles part two: the synthesis, reactivity, and physical properties of substituted pyrroles. Wiley, New York, pp 299–364

    Google Scholar 

  12. Cookson GH, Rimington C (1954) Porphobilinogen. Biochem J 57:476–484

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. de Duve C (1991) Blueprint for a cell: the nature and origin of life. Neil Patterson Publishers, Carolina Biological Supply Company, Burlington

    Google Scholar 

  14. De Rosa M, Arnold D (2013) Aromaticity and aminopyrroles: Desmotropy and solution tautomerism of 1H-pyrrol-3-aminium and 1H-pyrrol-3(2H)-iminium cation: a stable σ-complex. J Org Chem 78:1107–1112

    Article  PubMed  Google Scholar 

  15. De Rosa M, Arnold D, Hartline D, Truong L, Verner R, Wang T, Westin C (2015) Effect of Bronsted acids and bases, and Lewis acid (Sn2+) on the regiochemistry of the reaction of amines with trifluoromethyl-β-diketones: reaction of 3-aminopyrrole to selectively produce regioisomeric 1H-pyrrolo[3,2-b]pyridines. J Org Chem 80:12288–12299

    Article  PubMed  Google Scholar 

  16. Deans RM, Chandrashaker V, Taniguchi M, Lindsey JS (2015) Complexity in structure-directed prebiotic chemistry. Effect of a defective competing reactant in tetrapyrrole formation. New J Chem 39:8273–8281

    CAS  Article  Google Scholar 

  17. Erdtman E, Bushnell EAC, Gauld JW, Eriksson LA (2010) Computational insights into the mechanism of porphobilinogen synthase. J Phys Chem B 114:16860–16870

    CAS  Article  PubMed  Google Scholar 

  18. Erdtman E, Bushnell EAC, Gauld JW, Eriksson LA (2011) Computational studies on Schiff-base formation: implications for the catalytic mechanism of porphobilinogen synthase. Comput Theor Chem 963:479–489

    CAS  Article  Google Scholar 

  19. Eschenmoser A (2007) The search for the chemistry of life’s origin. Tetrahedron 63:12821–12844

    CAS  Article  Google Scholar 

  20. Fischer H, Fink E (1944) Über eine neue Pyrrolsynthese. H-S Z Physiol Chem 280:123–126

    CAS  Article  Google Scholar 

  21. Franck B, Stratmann H (1981) Condensation products of the porphyrin precursor 5-aminolevulinic acid. Heterocycles 15:919–923

    CAS  Article  Google Scholar 

  22. Frère F, Nentwich M, Gacond S, Heinz DW, Neier R, Frankenberg-Dinkel N (2006) Probing the active site of Pseudomonas aeruginosa porphobilinogen synthase using newly developed inhibitors. Biochemistry 45:8243–8253

    Article  PubMed  Google Scholar 

  23. Frydman RB, Reil S, Frydman B (1971) Relation between structure and reactivity in porphobilinogen and related pyrroles. Biochemistry 10:1154–1160

    CAS  Article  PubMed  Google Scholar 

  24. George P (1973) Thermodynamic aspects of porphyrin synthesis and biosynthesis. Ann N Y Acad Sci 206:84–96

    CAS  Article  PubMed  Google Scholar 

  25. Gibson KD (1955) Some properties of δ-aminolaevulic acid dehydrase. In: Wolstenholme GEW, Millar ECP (eds) Porphyrin biosynthesis and metabolism (CIBA Foundation Symposium). Little, Brown, Boston, MA, pp 27–42

  26. Granick S (1950) The structural and functional relationships between heme and chlorophyll. Harvey Lect 44:220–245

    Google Scholar 

  27. Granick S (1957) Speculations on the origins and evolution of photosynthesis. Ann N Y Acad Sci 69:292–308

    CAS  Article  PubMed  Google Scholar 

  28. Granick S (1965) Evolution of heme and chlorophyll. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic, New York, pp 67–88

    Google Scholar 

  29. Granick S (1967) The heme and chlorophyll biosynthetic chain. In: Goodwin TW (ed) Biochemistry of chloroplasts, vol 2. Academic, New York, pp 393–410

    Google Scholar 

  30. Granick S, Bogorad L (1953) Porphobilinogen a monopyrrole. J Am Chem Soc 75:3610

    CAS  Article  Google Scholar 

  31. Granick S, Mauzerall D (1958) Porphyrin biosynthesis in erythrocytes. II. Enzymes converting δ-aminolevulinic acid to coproporphyrinogen. J Biol Chem 232:1119–1140

    CAS  PubMed  Google Scholar 

  32. Gumm A, Hammershøi A, Kofod-Hansen M, Mønsted O, Sørensen HO (2007) First aminoacetone chelate: [Co(tren){NH2CH2C(O)CH3}]3+—a substrate binding and activation model for zinc(II)-dependent 5-aminolaevulinic acid dehydratase. Dalton Trans 3227–3231

  33. Jackson AH (1990a) The synthesis of 1H-Pyrroles. In: Jones RA (ed) Pyrroles, part 1. The synthesis and the physical and chemical aspects of the pyrrole ring. Wiley, New York, pp 295–303

    Google Scholar 

  34. Jackson AH (1990b) The synthesis of 1H-Pyrroles. In: Jones RA (ed) Pyrroles, part 1. The synthesis and the physical and chemical aspects of the pyrrole ring. Wiley, New York, pp 305–327

    Google Scholar 

  35. Jaffe EK (2004) The porphobilinogen synthase catalyzed reaction mechanism. Bioorg Chem 32:316–325

    CAS  Article  PubMed  Google Scholar 

  36. Jaffe EK, Lawrence SH (2014) The dance of porphobilinogen synthase in the control of tetrapyrrole biosynthesis. In: Ferreira GC, Kadish KM, Smith KM, Guilard RG (eds) Handbook of porphyrin science, vol 26. World Scientific, Singapore, pp 79–128

  37. Jaffe EK, Rajagopalan JS (1990) Nuclear magnetic resonance studies of 5-aminolevulinate demonstrate multiple forms in aqueous solution. Bioorg Chem 18:381–394

    CAS  Article  Google Scholar 

  38. Knorr L (1884) Synthese von pyrrolderivaten. Ber Dtsch Chem Ges 17:1635–1642

    Article  Google Scholar 

  39. Lammertsma K, Prasad BV (1994) Imine ⇌ enamine tautomerism. J Am Chem Soc 116:642–650

    CAS  Article  Google Scholar 

  40. Lindsey JS, Ptaszek M, Taniguchi M (2009) Simple formation of an abiotic porphyrinogen in aqueous solution. Orig Life Evol Biosph 39:495–515

    CAS  Article  PubMed  Google Scholar 

  41. Lindsey JS, Chandrashaker V, Taniguchi M, Ptaszek M (2011) Abiotic formation of uroporphyrinogen and coproporphyrinogen from acyclic reactants. New J Chem 35:65–75

    CAS  Article  Google Scholar 

  42. Lowe G, Pratt RF (1976) Proton exchange of Pro-S hydrogen at C-1 in dihydroxyacetone phosphate, d-fructose 1,6-bisphosphate and d-fructose 1-phosphate catalysed by rabbit-muscle aldolase. Eur J Biochem 66:95–104

    CAS  Article  PubMed  Google Scholar 

  43. Mauzerall D (1960a) The condensation of porphobilinogen to uroporphyrinogen. J Am Chem Soc 82:2605–2609

    CAS  Article  Google Scholar 

  44. Mauzerall D (1960b) The thermodynamic stability of porphyrinogens. J Am Chem Soc 82:2601–2605

    CAS  Article  Google Scholar 

  45. Mauzerall D (1962) The photoreduction of porphyrins: structure of products. J Am Chem Soc 84:2437–2445

    CAS  Article  Google Scholar 

  46. Mauzerall D (1965) Spectra of molecular complexes of porphyrins in aqueous solution. Biochemistry 4:1801–1810

    CAS  Article  Google Scholar 

  47. Mauzerall D (1976) Chlorophyll and photosynthesis. Philos Trans R Soc Lond B 273:287–294

    CAS  Article  Google Scholar 

  48. Mauzerall D (1978a) Photoredox reactions of porphyrins and the origins of photosynthesis. In: van Tamelen EE (ed) Bioorganic chemistry, vol. IV. Academic, New York, pp 303–304

  49. Mauzerall D (1978b) Bacteriochlorophyll and photosynthetic evolution. In: Clayton RK, Sistrom WR (eds) The photosynthetic bacteria. Plenum Press, New York, pp 223–231

    Google Scholar 

  50. Mauzerall D (1984) The occurrence and determination of δ-aminolevulinic acid and porphobilinogen in urine. CC/Life Sci:14

  51. Mauzerall DC (1990) The photochemical origins of life and photoreaction of ferrous ion in the archean oceans. Orig Life Evol Biosph 20:293–302

    CAS  Article  Google Scholar 

  52. Mauzerall DC (1998) Evolution of porphyrins. Clin Dermatol 16:195–201

    CAS  Article  PubMed  Google Scholar 

  53. Mauzerall D, Granick S (1956) Occurrence and determination of δ-aminolevulinic acid and porphobilinogen in urine. J Biol Chem 219:435–446

    CAS  PubMed  Google Scholar 

  54. Mercer-Smith JA, Mauzerall D (1981) Molecular hydrogen production by uroporphyrin and coproporphyrin: a model for the origin of photosynthetic function. Photochem Photobiol 34:407–410

    CAS  Article  Google Scholar 

  55. Mercer-Smith JA, Mauzerall DC (1984) Photochemistry of porphyrins: a model for the origin of photosynthesis. Photochem Photobiol 39:397–405

    CAS  Article  PubMed  Google Scholar 

  56. Mercer-Smith JA, Raudino A, Mauzerall DC (1985) A model for the origin of photosynthesis—III. The ultraviolet photochemistry of uroporphyrinogen. Photochem Photobiol 42:239–244

    CAS  Article  PubMed  Google Scholar 

  57. Motiu-DeGrood R, Hunt W, Wilde J, Hupe DJ (1979) Rates and equilibria for the inactivation of muscle aldolase by an active site directed Michael reaction. J Am Chem Soc 101:2182–2190

    CAS  Article  Google Scholar 

  58. Neier R (1996) Chemical synthesis of porphobilinogen and studies of its biosynthesis. Adv Nitrogen Heterocycle 2:35–146

    CAS  Article  Google Scholar 

  59. Pratt RF (1977) Rabbit muscle aldolase catalyzed proton exchange of hydroxyacetone phosphate with solvent. Biochemistry 16:3988–3994

    CAS  Article  PubMed  Google Scholar 

  60. Rideout JM, Wright DJ, Lim CK (1983) High performance liquid chromatography of uroporphyrin isomers. J Liq Chromatogr 6:383–394

    CAS  Article  Google Scholar 

  61. Scott JJ (1956) Synthesis of crystallizable porphobilinogen. Biochem J 62:6P

    Google Scholar 

  62. Scott AI, Townsend CA, Okada K, Kajiwara M (1973) Concerning the biosynthesis of vitamin B12. Trans NY Acad Sci 35:72–79

    CAS  Article  Google Scholar 

  63. Shamim A, Hambright P (1983) Full pH study of the incorporation of zinc(II) into uroporphyrin I. Inorg Chem 22:694–696

    CAS  Article  Google Scholar 

  64. Shemin D (1970) On the synthesis of heme. Naturwissenschaften 57:185–190

    CAS  Article  PubMed  Google Scholar 

  65. Soares ARM, Taniguchi M, Chandrashaker V, Lindsey JS (2012a) Self-organization of tetrapyrrole constituents to give a photoactive protocell. Chem Sci 3:1963–1974

    CAS  Article  Google Scholar 

  66. Soares AR, Taniguchi M, Chandrashaker V, Lindsey JS (2012b) Primordial oil slick and the formation of hydrophobic tetrapyrrole macrocycles. Astrobiology 12:1055–1068

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. Soares ARM, Taniguchi M, Chandrashaker V, Lindsey JS (2013a) Expanded combinatorial formation of porphyrin macrocycles in aqueous solution containing vesicles. A prebiotic model. New J Chem 37:1073–1086

    CAS  Article  Google Scholar 

  68. Soares ARM, Anderson DR, Chandrashaker V, Lindsey JS (2013b) Catalytic diversification upon metal scavenging in a prebiotic model for formation of tetrapyrrole macrocycles. New J Chem 37:2716–2732

    CAS  Article  Google Scholar 

  69. Soldermann CP, Vallinayagam R, Tzouros M, Neier R (2008) Facile synthesis of a “ready to use” precursor of porphobilinogen and its amino acid derivatives. J Org Chem 73:764–767

    CAS  Article  PubMed  Google Scholar 

  70. Stauffer F, Zizzari E, Soldermann-Pissot C, Faurite JP, Neier R (2001) Porphobilinogen synthase: a challenge for the chemist? Chimia 55:314–319

    CAS  Google Scholar 

  71. Szutka A (1966) Formation of pyrrolic compounds by ultra-violet irradiation of δ-aminolevulinic acid. Nature 212:401–402

    CAS  Article  PubMed  Google Scholar 

  72. Taniguchi M, Lindsey JS (2012) Enumeration of isomers of substituted tetrapyrrole macrocycles: from classical problems in biology to modern combinatorial libraries. In: Kadish KM, Smith KM, Guilard R (eds) Handbook of porphyrin science, vol 23. World Scientific, Singapore, pp 1–80

    Google Scholar 

  73. Taniguchi M, Soares ARM, Chandrashaker V, Lindsey JS (2012) A tandem combinatorial model for the prebiogenesis of diverse tetrapyrrole macrocycles. New J Chem 36:1057–1069

    CAS  Article  Google Scholar 

  74. Tian BX, Erdtman E, Eriksson LA (2012) Catalytic mechanism of porphobilinogen synthase: the chemical step revisited by QM/MM calculations. J Phys Chem B 116:12105–12112

    CAS  Article  PubMed  Google Scholar 

  75. Townsend CA (1974) Intermediate stages of corrin biosynthesis. Ph.D. Thesis. Yale University

  76. Tschesche R, Wirth W, Welmar K (1981) 5-Hydroxylevulinic acid, a new intermediate in the biosynthesis of protoanemonin. Phytochemistry 20:1835–1839

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the NSF Chemistry of Life Processes Program (NSF CHE-0953010). Exploratory studies of the conversion of ALA to PBG and uroporphyrins were conducted by J. S. L. as Guest Investigator at The Rockefeller University in 1990–1991. Mass spectra were obtained at the Mass Spectrometry Laboratory for Biotechnology at North Carolina State University. Partial funding for the facility was obtained from the North Carolina Biotechnology Center and the National Science Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jonathan S. Lindsey.

Appendix

Appendix

Table 7 Condensations of porphobilinogen (PBG)
Table 8 Evaluation of the reaction of phosphoester PiO-LA-Me with ALA

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Taniguchi, M., Ptaszek, M., Chandrashaker, V. et al. The Porphobilinogen Conundrum in Prebiotic Routes to Tetrapyrrole Macrocycles. Orig Life Evol Biosph 47, 93–119 (2017). https://doi.org/10.1007/s11084-016-9506-1

Download citation

Keywords

  • δ-aminolevulinic acid
  • Porphyrinogen
  • Porphyrin
  • DFT
  • Biosynthesis
  • Biomimetic