Advertisement

Origins of Life and Evolution of Biospheres

, Volume 47, Issue 2, pp 187–202 | Cite as

BIOMEX Experiment: Ultrastructural Alterations, Molecular Damage and Survival of the Fungus Cryomyces antarcticus after the Experiment Verification Tests

  • Claudia Pacelli
  • Laura Selbmann
  • Laura Zucconi
  • Jean-Pierre De Vera
  • Elke Rabbow
  • Gerda Horneck
  • Rosa de la Torre
  • Silvano Onofri
Astrobiology

Abstract

The search for traces of extinct or extant life in extraterrestrial environments is one of the main goals for astrobiologists; due to their ability to withstand stress producing conditions, extremophiles are perfect candidates for astrobiological studies. The BIOMEX project aims to test the ability of biomolecules and cell components to preserve their stability under space and Mars-like conditions, while at the same time investigating the survival capability of microorganisms. The experiment has been launched into space and is being exposed on the EXPOSE-R2 payload, outside of the International Space Station (ISS) over a time-span of 1.5 years. Along with a number of other extremophilic microorganisms, the Antarctic cryptoendolithic black fungus Cryomyces antarcticus CCFEE 515 has been included in the experiment. Before launch, dried colonies grown on Lunar and Martian regolith analogues were exposed to vacuum, irradiation and temperature cycles in ground based experiments (EVT1 and EVT2). Cultural and molecular tests revealed that the fungus survived on rock analogues under space and simulated Martian conditions, showing only slight ultra-structural and molecular damage.

Key words

BIOMEX Cryptoendolithic black fungus DNA damage Mars Space simulations Survival 

Abbreviations

BIOMEX

Biology and Mars Experiment

EVT

Experimental Verification Tests

ISS

International Space Station

L

Lunar analogue

LEO

Low-Earth Orbit

LIFE

Lichen and Fungi Experiment

OS

Original Substrate or Arenaria

P-MRS

Phyllosilicatic Mars Regolith Simulant

PMA

Propidium MonoAzide

RAPD

Random amplification of polymorphic DNA

S-MRS

Sulfatic Mars Regolith Simulant

SVT

Scientific Verification Tests

TEM

Transmission Electron Microscopy

Notes

Acknowledgments

This research was funded by the Italian Space Agency (ASI) and was supported by the German Helmholtz Association through the Helmholtz-Alliance “Planetary Evolution and Life”. The authors thank DLR (Institute of Aerospace Medicine) for space simulation tests. The PNRA (Italian National Program for Antarctic Research) for supporting Antarctic campaigns for sample collection and research laboratory studies in Italy. The Italian National Antarctic Museum “Felice Ippolito” is kindly acknowledged for funding CCFEE (Culture Collection of Fungi From Extreme Environments). The authors thank PhD. Ruth A. Bryan for English revision.

References

  1. Aerts JW, Röling WF, Elsaesser A, Ehrenfreund P (2014) Biota and Biomolecules in Extreme Environments on Earth: Implications for Life Detection on Mars. Life 4(4):535–565. doi: 10.3390/life4040535 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Atienzar FA, Venier P, Jha AN, Depledge MH (2002) Evaluation of the random amplified polymorphic DNA (RAPD) assay for the detection of DNA damage and mutations. Mutat Res-Gen Tox En 521:151–163. doi: 10.1016/S1383-5718(02)00216-4 CrossRefGoogle Scholar
  3. Baqué M, de Vera JP, Rettberg P, Billi D (2013) The BOSS and BIOMEX space experiments on the EXPOSE-R2 mission: Endurance of the desert cyanobacterium Chroococcidiopsis under simulated space vacuum, Martian atmosphere, UVC radiation and temperature extremes. Acta Astronaut 91:180–186. doi: 10.1016/j.actaastro CrossRefGoogle Scholar
  4. Baquè M, Verseux C, Rabbow, JP d V, Billi D (2014) Detection of Macromolecules in Desert Cyanobacteria Mixed with a Lunar Mineral Analogue After Space Simulations. Orig Life Evol Biosph 44:209–221. doi: 10.1007/s11084-014-9367-4 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bell AA, Wheeler MH (1986) Biosynthesis and functions of fungal melanins. Ann Rev Phytopath 24:411–451. doi: 10.1146/annurev.py.24.090186.002211 CrossRefGoogle Scholar
  6. Bibring JP, Langevin Y, Gendrin A, et al. (2005) Mars surface diversity as revealed by the OMEGA/Mars Express observations. Science 307:1576–1581. doi: 10.1126/science.1108806 CrossRefPubMedGoogle Scholar
  7. Böttger U, de Vera JP, Fritz J, Weber I, Hübers HW, Schulze-Makuch D (2012) Optimizing the detection of carotene in cyanobacteria in a Martian regolith analogue with a Raman spectrometer for the ExoMars mission. Planet Space Sci 60:356–362. doi: 10.1016/j.pss.2011.10.017 CrossRefGoogle Scholar
  8. Böttger U, De Vera JP, Hermelink A, Fritz J, Weber I, Schulze-Makuch D, Hübers HW (2013) Application of Raman Spectroscopy as In Situ Technology for the Search for Life. In: In Habitability of Other Planets and Satellites. Springer, Netherlands, pp. 331–345. doi: 10.1007/978-94-007-6546-7_18 CrossRefGoogle Scholar
  9. Bryan RA, Shuryak I, Broitman J, Marino SA, Dadachova K (2015) Irradiation of Cryptococcus neoformans with high doses of gamma rays or alpha particles leads to capsule dependent increases in XTT reducing activity. American Society for Microbiology 115th General meeting, AbstractGoogle Scholar
  10. Chevrier V, Mathé PE (2007) Mineralogy and evolution of the surface of Mars: a review. Planetary and Space Science 55:289–314. doi: 10.1016/j.pss.2006.05.039 CrossRefGoogle Scholar
  11. Dadachova E, Bryan RA, Huang X, Moadel T, et al. (2007) Ionizing radiation changes the electronic properties of melanin and enhances the growth of melanized fungi. PLoS One 2(5):e457. doi: 10.1371/journal.pone.0000457 CrossRefPubMedPubMedCentralGoogle Scholar
  12. de la Torre R, Sancho LG, Pintado A, et al. (2007) BIOPAN experiment LICHENS on the Foton M2 mission: Pre-flight verification tests of the Rhizocarpon geographicum-granite ecosystem. Adv Space Res 40:1665–1671. doi: 10.1016/j.asr.2007.02.022 CrossRefGoogle Scholar
  13. de La Torre R, Sancho LG, Horneck G, et al. (2010) Survival of lichens and bacteria exposed to outer space conditions–results of the Lithopanspermia experiments. Icarus 208:735–748. doi: 10.1016/j.icarus.2010.03.010 CrossRefGoogle Scholar
  14. de Vera JP, Horneck G, Rettberg P, Ott S (2002) The potential of the lichen symbiosis to cope with extreme conditions of outer space–I. Influence of UV radiation and space vacuum on the vitality of lichen symbiosis and germination capacity International Journal of Astrobiology 1:285–293. doi: 10.1017/S1473550403001216 Google Scholar
  15. de Vera JP, Horneck G, Rettberg P, Ott S (2004) The potential of the lichen symbiosis to cope with the extreme conditions of outer space II: germination capacity of lichen ascospores in response to simulated space conditions. Ad Space Res 33:1236–1243. doi: 10.1016/j.asr.2003.10.035 CrossRefGoogle Scholar
  16. de Vera JP, Boettger U, de la Torre NR, et al. (2012) Supporting Mars exploration: BIOMEX in Low Earth Orbit and further astrobiological studies on the Moon using Raman and PanCam technology. Planet Space Sci 74:103–110. doi: 10.1016/j.pss.2012.06.010 CrossRefGoogle Scholar
  17. Demets R, Schulte W, Baglioni P (2005) The past, present and future of Biopan. Adv Space Res 36:311–316. doi: 10.1016/j.asr.2005.07.005 CrossRefGoogle Scholar
  18. Finster K, Hansen AA, Liengaard L, Mikkelsen K, Kristoffersen T, Merrison J, Nörnberg P, Lomstein BA (2007) Mars simulation experiments with complex microbial soil communities. In: Horneck G (ed) ROME: Response of Organisms to the Martian Environment (Cockell C. ESA Communications, ESTEC, Noordwijk, The Netherlands, pp. 59–71Google Scholar
  19. Hansen AA, Herbert RA, Mikkelsen K, et al. (2007) Viability, diversity and composition of the bacterial community in a high Arctic permafrost soil from Spitsbergen, Northern Norway. Environ Microbiol 9:2870–2884. doi: 10.1111/j.1462-2920.2007.01403.x CrossRefPubMedGoogle Scholar
  20. Hassler DM, Zeitlin C, Wimmer-Schweingruber RF, et al. (2014) Mars’ surface radiation environment measured with the Mars Science Laboratory’s Curiosity Rover. Science 343:6169. doi: 10.1126/science.1244797 CrossRefGoogle Scholar
  21. Hecht MH, Kounaves SP, Quinn RC, et al. (2009) Detection of perchlorate and the soluble chemistry of Martian soil at the Phoenix lander site. Science 325:64–67PubMedGoogle Scholar
  22. Henson JM, Butler MJ, Day AW (1999) The dark side of the mycelium: melanins of phytopathogenic fungi. Annu rev of phytopathol 37:447–471. doi: 10.1146/annurev.phyto.37.1.447 CrossRefGoogle Scholar
  23. Horneck G, Bücker H, Reitz G (1994) Long-term survival of bacterial spores in space. Adv Space Res 14:41–45. doi: 10.1016/0273-1177(94)90448-0 CrossRefPubMedGoogle Scholar
  24. Horneck G, Klaus DM, Mancinelli RL (2010) Space microbiology. Microbiol Mol Biol Rev 74:121–156. doi: 10.1128/MMBR.00016-09 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Igisu M, Nakashima S, Ueno Y, Awramik SM, Maruyama S (2006) In situ infrared microspectroscopy of ∼850 million-year-old prokaryotic fossils. Appl Spectrosc 60:1111–1120 http://www.opticsinfobase.org/as/abstract.cfm?URI=as-60-10-1111 CrossRefPubMedGoogle Scholar
  26. Igisu M, Ueno Y, Shimojima M, Nakashima S, Awramik SM, Ohta H, Maruyama S (2009) Micro-FTIR spectroscopic signatures of bacterial lipids in Proterozoic microfossils. Precambrian Res 173:19–26. doi: 10.1016/j.precamres.2009.03.006 CrossRefGoogle Scholar
  27. Kong L, Dong J, Hart GE (2000) Characteristics, linkage-map positions, and allelic differentiation of Sorghum bicolor (L.) Moench DNA simple-sequence repeats (SSRs). Theor Appl Genet 101:438–448. doi: 10.1007/s001220051501 CrossRefGoogle Scholar
  28. Lyon DY, Monier JM, Dupraz S, Freissinet C, Simonet P, Vogel TM (2010) Integrity and Biological Activity of DNA after UV Exposure. Astrobiology 10:285–292. doi: 10.1089/ast.2009.0359 CrossRefPubMedGoogle Scholar
  29. Meeßen J, Sánchez FJ, Brandt A, et al. (2013a) Extremotolerance and resistance of lichens: comparative studies on five species used in astrobiological research I. Morphological and anatomical characteristics. Origins Life Evol B 43:283–303. doi: 10.1007/s11084-013-9337-2 CrossRefGoogle Scholar
  30. Meeßen J, Sánchez FJ, Sadowsky A, de la Torre R, Ott S, de Vera JP (2013b) Extremotolerance and Resistance of Lichens: Comparative Studies on Five Species Used in Astrobiological Research II. Secondary Lichen Compounds. Origins Life Evol B 43:501–526. doi: 10.1007/s11084-013-9348-z CrossRefGoogle Scholar
  31. Meeßen J, Wuthenow P, Schille P, Rabbow E, de Vera JPP, Ott S, (2015) Resistance of the lichen Buellia frigida to simulated space conditions during the preflight tests for BIOMEX—viability assay and morphological stability Astrobiology 15. doi: 10.1089/ast.2015.1281
  32. Moeller R, Reitz G, Nicholson WL, the PROTECT Team, Horneck G (2012) Mutagenesis in bacterial spores exposed to space and simulated Martian conditions: data from the EXPOSE-E spaceflight experiment PROTECT. Astrobiology 12:457–468. doi: 10.1089/ast.2011.0739 CrossRefPubMedGoogle Scholar
  33. Mytrokhyn OV, Bogdanova SV, Shumlyanskyy LV (2003) Anorthosite rocks of Fedorivskyy suite (Korosten Pluton, Ukrainian Shield). In: Current Problems in Geology. Kyiv National University, Kyiv, pp. 53–57Google Scholar
  34. Nybakken L, Solhaug KA, Bilger W, Gauslaa Y (2004) The lichens Xanthoria elegans and Cetraria islandica maintain a high protection against UV-B radiation in Arctic habitats. Oecologia 140:211–216. doi: 10.1007/s00442-004-1583-6 CrossRefPubMedGoogle Scholar
  35. Olsson-Francis K, de La Torre R, Towner MC, Cockell CS (2009) Survival of akinetes (resting-state cells of cyanobacteria) in Low Earth Orbit and simulated extraterrestrial conditions. Origins Life Evol B 39:565–579. doi: 10.1007/s11084-009-9167-4 CrossRefGoogle Scholar
  36. Onofri S, Selbmann L, De Hoog GS, Grube M, Barreca D, Ruisi S, Zucconi L (2007) Evolution and adaptation of fungi at boundaries of life. Adv Space Res 40:1657–1664. doi: 10.1016/j.asr.2007.06.004 CrossRefGoogle Scholar
  37. Onofri S, Barreca D, Selbmann L, Isola D, Rabbow E, Horneck G, Zucconi L (2008) Resistance of Antarctic black fungi and cryptoendolithic communities to simulated space and Martian conditions. Stud Mycol 61:99–109. doi: 10.3114/sim.2008.61.10 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Onofri S, de la Torre R, de Vera JP, et al. (2012) Survival of rock-colonizing organisms after 1.5 years in outer space. Astrobiology 12:508–516. doi: 10.1089/ast.2011.0736 CrossRefPubMedGoogle Scholar
  39. Panieri G, Lugli S, Manzi V, Roveri M, Schreiber BC, Palinska KA (2010) Ribosomal RNA gene fragments from fossilized cyanobacteria identified in primary gypsum from the late Miocene, Italy. Geobiology 8:101–111. doi: 10.1111/j.1472-4669.2009.00230.x CrossRefPubMedGoogle Scholar
  40. Plemenitaš A, Vaupotič T, Lenassi M, Kogej T, Gunde-Cimerman N (2008) Adaptation of extremely halotolerant black yeast Hortaea werneckii to increased osmolarity: a molecular perspective at a glance. Stud Mycol 61:67–75. doi: 10.3114/sim.2008.61.06 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Poulet F, Bibring JP, Mustard JF, et al. (2005) Phyllosilicates on Mars and implications for early Martian climate. Nature 438:623–627. doi: 10.1038/nature04274 CrossRefPubMedGoogle Scholar
  42. Rabbow E, Rettberg P, Barczyk S, et al. (2012) EXPOSE-E: an ESA astrobiology mission 1.5 years in space. Astrobiology 12:374–386. doi: 10.1089/ast.2011.0760 CrossRefPubMedGoogle Scholar
  43. Rabbow E, Rettberg P, Barczyk S, et al. (2015) The astrobiological mission EXPOSE-R on board of the International Space Station. Int J Astrobiol 14:3–16. doi: 10.1017/S1473550414000202 CrossRefGoogle Scholar
  44. Raggio J, Pintado A, Ascaso C, et al. (2011) Whole lichen thalli survive exposure to space conditions: results of Lithopanspermia experiment with Aspicilia fruticulosa. Astrobiology 11:281–292. doi: 10.1089/ast.2010.0588 CrossRefPubMedGoogle Scholar
  45. Sánchez FJ, Mateo-Martí E, Raggio J, et al. (2012) The resistance of the lichen Circinaria gyrosa (nom. provis.) towards simulated Mars conditions—a model test for the survival capacity of an eukaryotic extremophile. Planetary and Space Science 72:102–110. doi: 10.1016/j.pss.2012.08.005 CrossRefGoogle Scholar
  46. Sancho LG, De la Torre R, Horneck G, et al. (2007) Lichens survive in space: results from the 2005 LICHENS experiment. Astrobiology 7:443–454. doi: 10.1089/ast.2006.0046 CrossRefPubMedGoogle Scholar
  47. Sancho LG, de la Torre R, Pintado A (2008) Lichens, new and promising material from experiments in astrobiology. Fungal Biology Reviews 22:103–109. doi: 10.1016/j.fbr.2008.12.001 CrossRefGoogle Scholar
  48. Sankaranarayanan K, Lowenstein TK, Timofeeff MN, Schubert BA, Lum JK (2014) Characterization of Ancient DNA Supports Long-Term Survival of Haloarchaea. Astrobiology 14(7):553–560. doi: 10.1089/ast.2014.1173 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Selbmann L, De Hoog GS, Mazzaglia A, Friedmann EI, Onofri S (2005) Fungi at the edge of life: cryptoendolithic black fungi from Antarctic desert. Stud Mycol 51:1–32Google Scholar
  50. Sephton MA (2010) Organic geochemistry and the exploration of Mars. J Cosmol 5:1141–1149Google Scholar
  51. Sterflinger K (2006) Black yeasts and meristematic fungi: ecology, diversity and identification. In: Seckbach J, editor. Springer-Verlag, The yeast handbook. Biodiversity and ecophysiology of yeasts Berlin, pp. 501–514Google Scholar
  52. Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246CrossRefPubMedPubMedCentralGoogle Scholar
  53. White TJ, Bruns T, Lee SJ, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications 18:315–322Google Scholar
  54. Willerslev E, Hansen AJ, Poinar HN (2004) Isolation of nucleic acids and cultures from fossil ice and permafrost. Trends Ecol Evol 19:141–147. doi: 10.1016/j.tree.2003.11.010 CrossRefPubMedGoogle Scholar
  55. Yen AS, Kim SS, Hecht MH, Frant MS, Murray B (2000) Evidence that the reactivity of the Martian soil is due to superoxide ions. Science 289:1909–1912CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Claudia Pacelli
    • 1
  • Laura Selbmann
    • 1
  • Laura Zucconi
    • 1
  • Jean-Pierre De Vera
    • 2
  • Elke Rabbow
    • 3
  • Gerda Horneck
    • 3
  • Rosa de la Torre
    • 4
  • Silvano Onofri
    • 1
  1. 1.Department of Ecological and Biological Science (DEB)University of TusciaViterboItaly
  2. 2.German Aerospace Center (DLR) BerlinInstitute of Planetary ResearchBerlinGermany
  3. 3.German Aerospace CentreInstitute of Aerospace MedicineKölnGermany
  4. 4.Department of Earth ObservationINTA – National Institute of Aerospace TechniqueMadridSpain

Personalised recommendations