Advertisement

The Life Story of Hydrogen Peroxide III: Chirality and Physical Effects at the Dawn of Life

  • Rowena BallEmail author
  • John Brindley
Theoretical Modeling

Abstract

It is a remarkable observed fact that all life on Earth is homochiral, its biology using exclusively the D-enantiomer of ribose, the sugar moiety of the ribonucleic acids, and the L-enantiomers of the chiral amino acids. Motivated by concurrent work that elaborates further the role of hydrogen peroxide in providing an oscillatory drive for the RNA world (Ball & Brindley 2015a, J. R. Soc. Interface 12, 20150366, and Ball & Brindley 2015b, this journal, in press), we reappraise the structure and physical properties of this small molecule within this context. Hydrogen peroxide is the smallest, simplest molecule to exist as a pair of non-superimposable mirror images, or enantiomers, a fact which leads us to develop the hypothesis that its enantiospecific interactions with ribonucleic acids led to enantioselective outcomes. We propose a mechanism by which these chiral interactions may have led to amplification of D-ribonucleic acids and extinction of L-ribonucleic acids.

Keywords

Biological homochirality RNA world Hydrogen peroxide Axial chirality 

Notes

Acknowledgments

This work was supported by Australian Research Council Future Fellowship FT0991007 (Rowena Ball).

References

  1. Acharya P, Chattopadhyaya J (2002) The hydrogen bonding and hydration of 2′-OH in adenosine and adenosine 3′-ethyl phosphate. J Organic Chem 67:1852–1865. doi: 10.1021/jo010960j CrossRefGoogle Scholar
  2. Alkorta I, Zborowski K, Elguero J (2006) Self-aggregation as a source of chiral discrimination. Chem Phys Lett 427:289–294. doi: 10.1016/j.cplett.2006.06.104 CrossRefGoogle Scholar
  3. Ball R (2000) Singularity theory study of overdetermination in models for l–h transitions. Phys Rev Lett 84:71–75. doi: 10.1103/PhysRevLett.84.3077 CrossRefGoogle Scholar
  4. Ball R (2001) Understanding critical behaviour through visualization: A walk around the pitchfork. Comput Phys Commun 142:3077–3080. doi: 10.1016/S0010-4655(01)00322-8 CrossRefGoogle Scholar
  5. Ball R, Brindley J (2014) Hydrogen peroxide thermochemical oscillator as driver for primordial RNA replication. J Roy Soc Interface 11:20131,052. doi: 10.1098/rsif.2013.1052 CrossRefGoogle Scholar
  6. Ball R, Brindley J (2015a) The life story of hydrogen peroxide II. A periodic pH thermochemical drive for the RNA world. J Roy Soc Interface 12:20150366. doi: 10.1098/rsif.2015.0366 CrossRefGoogle Scholar
  7. Ball R, Brindley J (2015b) Thiosulfate-hydrogen peroxide redox oscillator as pH driver for ribozyme activity in the RNA world. Origins of Life and Evolution of Biospheres, in press. doi: 10.1007/s11084-015-9448-z
  8. Ball R, Haymet ADJ (2001) Bistability and hysteresis in self-assembling micelle systems: phenomenology and deterministic dynamics. Phys Chem Chem Phys 3:4753–4761. doi: 10.1039/b104483b CrossRefGoogle Scholar
  9. Ball R, McIntosh AC, Brindley J (2004) Feedback processes in cellulose thermal decomposition. Implications for fire-retarding strategies and treatments. Combust Theor Model 8:281–75. doi: 10.1088/1364-7830/8/2/005 CrossRefGoogle Scholar
  10. Bitencourt ACP, Ragnil M, Maciel GS, Aquilanti V, Prudente FV (2008) Level distributions, partition functions, and rates of chirality changing processes for the torsional mode around O-O bonds. J Chem Phys 129:154,316. doi: 10.1063/1.2992554 CrossRefGoogle Scholar
  11. Blackmond DG (2011) The origin of biological homochirality. Phil Trans Roy Soc B 366:2878–2884. doi: 10.1098/rstb.2011.0130 CrossRefGoogle Scholar
  12. Brenner H, Bielenberg JR (2005) A continuum approach to phoretic motions: Thermophoresis. Physica A 355:251–273. doi: 10.1016/j.physa.2005.03.020 CrossRefGoogle Scholar
  13. Bunge A, Hamann HJ, McCalmont E, Liebscher J (2009) Enantioselective epoxidation of 2-substituted 1,4-naphthoquinones using gem-dihydroperoxides. Tetrahedron Lett 50:4629–4632. doi: 10.1016/j.tetlet.2009.05.096 CrossRefGoogle Scholar
  14. Bunge A, Hamann HJ, Dietza D, Liebscher J (2013) Enantioselective epoxidation of tertiary allylic alcohols by chiral dihydroperoxides. Tetrahedron 69:2446–2450. doi: 10.1016/j.tet.2013.01.032 CrossRefGoogle Scholar
  15. Churakov AV, Prikhodchenko PV, Howard JAK, Lev O (2009) Glycine and L-serine crystalline perhydrates. Chem Commun 28:4224–4226. doi: 10.1039/b906801e CrossRefGoogle Scholar
  16. Clother DR, Brindley J (2000) Stochastic development of individual members of a population: a Brownian motion approach. Bull Math Biol 62:1003–1034. doi: 10.1006/bulm.2000.0189 CrossRefPubMedGoogle Scholar
  17. Diekmann O, Gyllenberg M, Metz JAJ, Thieme HR (1998) On the formulation and analysis of general deterministic structured population models — I. Linear theory. J Math Biol 36:349–388. doi: 10.1007/s002850050104 CrossRefGoogle Scholar
  18. Dong XL, Zhoua ZY, Liua SZ, Gonga XL (2005) Theoretical study of chiral discrimination in the hydrogen bonding complexes of lactic acid and hydrogen peroxide. J Molecular Structure: THEOCHEM 718:9–15. doi: 10.1016/j.theochem.2004.10.053 CrossRefGoogle Scholar
  19. Drummond PD, Vaughan TG, Drummond AJ (2010) Extinction times in autocatalytic systems. J Phys Chem A 114:10,481–10,491. doi: 10.1021/jp104471e CrossRefGoogle Scholar
  20. Du D, Zhou Z (2006) Chiral discrimination in hydrogen-bonded complexes of hydrogen peroxide with methyl hydroperoxide: Theoretical study. Int J Quantum Chem 106:935–942. doi: 10.1002/qua.20790 CrossRefGoogle Scholar
  21. Fohrer J, Hennig M, Carlomagno T (2006) Influence of the 2-hydroxyl group conformation on the stability of A-form helices in RNA. J Molecular Biol 356:280–287. doi: 10.1016/j.jmb.2005.11.043 CrossRefGoogle Scholar
  22. Frank FC (1953) On spontaneous asymmetric synthesis. Biochim Biophys Acta 11:459–463. doi: 10.1016/0006-3002(53)90082-1 CrossRefPubMedGoogle Scholar
  23. Gao H, Zhang G, Meng L, Chen D (2010) Chiral discrimination in hydrogen-bonded complexes of 2-fluorooxirane with hydrogen peroxide. Mol Phys 108:2073–2080. doi: 10.1080/00268976.2010.505207 CrossRefGoogle Scholar
  24. Gross PM, Taylor RC (1950) The dielectric constants of water, hydrogen peroxide and hydrogen peroxide-water mixtures. J Am Chem Soc 72:2075–2080. doi: 10.1021/ja01161a055 CrossRefGoogle Scholar
  25. Gubskaya AV, Kusalik PG (2002) The total molecular dipole moment for liquid water. J Chem Phys 117:5290–5302. doi: 10.1063/1.1501122 CrossRefGoogle Scholar
  26. Gutman I (2014) Frank model with limited resources. J Math Chem 52:2330–2333. doi: 10.1007/s10910-014-0388-z CrossRefGoogle Scholar
  27. Gutman I, Babović V, Jokić S (1988) The origin of biomolecular chirality: The generalized Frank model with arbitrary initial conditions. Chem Phys Lett 144:187–190. doi: 10.1016/0009-2614(88)87114-8 CrossRefGoogle Scholar
  28. Hofer T (2001) Oxidation of 2-deoxyguanosine by H2O2-ascorbate: evidence against free OH and thermodynamic support for two-electron reduction of H2O2. J Chem Soc Perkin Trans 2(2):210–213. doi: 10.1039/B006394K CrossRefGoogle Scholar
  29. Hoft E (1993) Enantioselective epoxidation with peroxidic oxygen. Top Curr Chem 164:63–77CrossRefGoogle Scholar
  30. Hunt RH, Leacock RA, Peters CW, Hecht KT (1965) Internal rotation in hydrogen peroxide: The far infrared spectrum and the determination of the hindering potential. J Chem Phys 42:1931–1946. doi: 10.1063/1.1696228 CrossRefGoogle Scholar
  31. Joyce GF, Visser GM, van Boeckel CAA, van Boom JH, Orgel LE, van Westrenen J (1984) Chiral selection in poly(C)-directed synthesis of oligo(G). Nature 310:602–604. doi: 10.1038/310602a0 CrossRefPubMedGoogle Scholar
  32. Kondepudi DK, Nelson GW (1984) Chiral-symmetry-breaking states and their sensitivity in nonequilibrium chemical systems. Physica A: Stat Mech Appl 125:465–496. doi: 10.1016/0378-4371(84)90065-7 CrossRefGoogle Scholar
  33. Martins-Costa MTC, Ruiz-López MF (2013) Molecular dynamics of hydrogen peroxide in liquid water using a combined quantum/classical force field. Chem Phys 332:341–347. doi: 10.1016/j.chemphys.2006.12.018 CrossRefGoogle Scholar
  34. Mast CB, Schink S, Gerland U, Braun D (2011) Escalation of polymerization in a thermal gradient. Proc Natl Acad Sci 110:8030–8035. doi: 10.1073/pnas.1303222110 CrossRefGoogle Scholar
  35. McGrath MP (2015) Torsional electric dipole moment functions calculated for HOOH and ClOOCl. J Chem Phys 138:094,305. doi: 10.1063/1.4792364 CrossRefGoogle Scholar
  36. Ovaskainen O, Meerson B (2010) Stochastic models of population extinction. Trends Ecol Evol 25:643–652. doi: 10.1016/j.tree.2010.07.009 CrossRefPubMedGoogle Scholar
  37. Plasson R, Kondepudi DK, Bersini H, Commeyras A, Asakura K (2007) Emergence of homochirality in far-from-equilibrium systems: Mechanisms and role in prebiotic chemistry. Chirality 19:589–600. doi: 10.1002/chir.20440 CrossRefPubMedGoogle Scholar
  38. Ribó JM, Hochberg D (2008) Stability of racemic and chiral steady states in open and closed chemical systems. Phys Lett A 373:111–122. doi: 10.1016/j.physleta.2008.10.079 CrossRefGoogle Scholar
  39. Ribó JM, Crusats J, el Hachemi Z, Moyano A, Blanco C, Hochberg D (2013) Spontaneous mirror symmetry breaking in the limited enantioselective autocatalysis model: Abyssal hydrothermal vents as scenario for the emergence of chirality in prebiotic chemistry. Astrobiology 13:132–142. doi: 10.1089/ast.2012.0904 CrossRefPubMedGoogle Scholar
  40. Ruiz-Mirazo K, Briones C (2014) de la Escosura A. Prebiotic systems chemistry: New perspectives for the origins of life. Chem Rev 114:285–366. doi: 10.1021/cr2004844 PubMedGoogle Scholar
  41. Schumb WC, Satterfield CN, Wentworth RL (1953) Hydrogen Peroxide. Tech. Rep. 43, Part Two, 232 pp, Massachusetts Institute of Technology, Cambridge, MassGoogle Scholar
  42. Viedma C, Cintas P (2011) Homochirality beyond grinding: deracemizing chiral crystals by temperature gradient under boiling. Chemical Communications 47:12,786–12,788. doi: 10.1039/C1CC14857E CrossRefGoogle Scholar
  43. Yin A, Zhang G, Chen D (2009) Chiral discrimination in hydrogen-bonded complexes of butan-2-ol (m-form) and hydrogen peroxide. Int J Quantum Chem 109:1472–1480. doi: 10.1002/qua.21974 CrossRefGoogle Scholar
  44. Zhang G, Yin A, Chen D (2009) Chiral discrimination in hydrogen-bonded complexes of 2-methylol oxirane with hydrogen peroxide. Int J Quantum Chem 109:920–930. doi: 10.1002/qua.21878
  45. Zhu TF, Szostak JW (2009) Coupled growth and division of model protocell membranes. J Am Chem Soc 131:5705–5713. doi: 10.1021/ja900919c

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Mathematical Sciences Institute and Research School of ChemistryThe Australian National UniversityCanberraAustralia
  2. 2.School of MathematicsUniversity of LeedsLeedsUK

Personalised recommendations