Timescales of Oxygenation Following the Evolution of Oxygenic Photosynthesis

  • Lewis M. Ward
  • Joseph L. Kirschvink
  • Woodward W. Fischer


Among the most important bioenergetic innovations in the history of life was the invention of oxygenic photosynthesis—autotrophic growth by splitting water with sunlight—by Cyanobacteria. It is widely accepted that the invention of oxygenic photosynthesis ultimately resulted in the rise of oxygen by ca. 2.35 Gya, but it is debated whether this occurred more or less immediately as a proximal result of the evolution of oxygenic Cyanobacteria or whether they originated several hundred million to more than one billion years earlier in Earth history. The latter hypothesis involves a prolonged period during which oxygen production rates were insufficient to oxidize the atmosphere, potentially due to redox buffering by reduced species such as higher concentrations of ferrous iron in seawater. To examine the characteristic timescales for environmental oxygenation following the evolution of oxygenic photosynthesis, we applied a simple mathematical approach that captures many of the salient features of the major biogeochemical fluxes and reservoirs present in Archean and early Paleoproterozoic surface environments. Calculations illustrate that oxygenation would have overwhelmed redox buffers within ~100 kyr following the emergence of oxygenic photosynthesis, a geologically short amount of time unless rates of primary production were far lower than commonly expected. Fundamentally, this result arises because of the multiscale nature of the carbon and oxygen cycles: rates of gross primary production are orders of magnitude too fast for oxygen to be masked by Earth’s geological buffers, and can only be effectively matched by respiration at non-negligible O2 concentrations. These results suggest that oxygenic photosynthesis arose shortly before the rise of oxygen, not hundreds of millions of years before it.


Great oxidation event Phototrophy Methane Aerobic respiration Biogeochemistry 



LMW was supported by an NSF Graduate Research Fellowship. JLK is grateful for the support of the Earth-Life Science Institute. WWF acknowledges support from the Agouron Institute, a David and Lucile Packard Foundation Fellowship for Science and Engineering, the Caltech Center for Environment-Microbe Interactions, and NSF Division of Earth Sciences award EAR-1349858. We thank Jena Johnson, Jim Hemp, Sarah Slotznick, and two anonymous reviewers for providing valuable feedback on the study.


  1. Allwood AC, Walter M, Kamber B et al (2006) Nature 441:714–718Google Scholar
  2. Anbar AD, Knoll AH (2002) Science 297:1137–1142CrossRefPubMedGoogle Scholar
  3. Anbar AD, Duan Y, Lyons TW et al (2007) Science 317:1903–1906Google Scholar
  4. Arthur MA, Dean WE, Neff ED et al (1994) Glob Biogeochem Cycles 8:195–217CrossRefGoogle Scholar
  5. Bachan A, Kump LR (2015) PNAS 121:6562–6567CrossRefGoogle Scholar
  6. Barrick JE, Yu DS, Yoon SH et al (2009) Nature 461:1243–1247CrossRefPubMedGoogle Scholar
  7. Bekker A, Holland HD (2012) Earth Planet Sci Lett 317–318:295–304CrossRefGoogle Scholar
  8. Bekker A, Holland H, Wang P et al (2004) Nature 427:117–120CrossRefPubMedGoogle Scholar
  9. Bender M, Sowers T, Labeyrie L (1994) Glob Biogeochem Cycles 8:363–376CrossRefGoogle Scholar
  10. Bender M, Sowers T, Lipenkov V (1999) Deep-Sea Res I 46:637–654CrossRefGoogle Scholar
  11. Bennett AF, Lenski RE, Mittler JE (1992) Evolution 46:16–30CrossRefGoogle Scholar
  12. Berner RA (1982) Am J Sci 282:451–473CrossRefGoogle Scholar
  13. Berner RA (1989) Glob Planet Chang 1:97–122CrossRefGoogle Scholar
  14. Berner RA (2006) Geochim Cosmochim Acta 70:5653–5664CrossRefGoogle Scholar
  15. Bird LJ, Coleman M, Newman D (2013) Appl Environ Microbiol 79:3619–3627PubMedCentralCrossRefPubMedGoogle Scholar
  16. Bjerrum CJ, Canfield DE (2002) Nature 417:159–162CrossRefPubMedGoogle Scholar
  17. Blankenship RE, Hartman H (1998) Trends Biochem Sci 23:94–97CrossRefPubMedGoogle Scholar
  18. Borda MJ, Elsetinow A, Schoonen M et al (2001) Astrobiology 1(3):283–288CrossRefPubMedGoogle Scholar
  19. Bosak T, Greene S, Newman D (2007) Geobiology 5:119–126PubMedCentralCrossRefPubMedGoogle Scholar
  20. Brasier MD, Green O, Jephcoat A et al (2002) Nature 416:76–81CrossRefPubMedGoogle Scholar
  21. Brock TD (1978) Thermophilic microorganisms and life at high temperatures. Springer, New YorkCrossRefGoogle Scholar
  22. Borcks JJ, Logan G, Buick R et al (1999) Science 285:1033–1036Google Scholar
  23. Buick R (1992) Science 255:74–77CrossRefPubMedGoogle Scholar
  24. Canfield DE (2005) Annu Rev Earth Planet Sci 33:1–36CrossRefGoogle Scholar
  25. Canfield DE, Glazer A, Falkowski PG (2010) Science 330:192–196CrossRefPubMedGoogle Scholar
  26. Canfield DE, Ngombi-Pemba L, Hammarlund EU et al (2013) PNAS 110(42):6736–16741CrossRefGoogle Scholar
  27. Catling DC, Zahnle K, McKay C (2001) Science 293:839–843Google Scholar
  28. Chandler FW (1988) Carbonates Evaporites 3:75–94CrossRefGoogle Scholar
  29. Cloud P (1973) Econ Geol 68:1135–1143CrossRefGoogle Scholar
  30. Crowe SA, Jones CA, Katsev S et al (2008) PNAS 105:15938–15943PubMedCentralCrossRefPubMedGoogle Scholar
  31. Crowe SA, Katsev S, Leslie K et al (2011) Geobiology 9:61–78CrossRefPubMedGoogle Scholar
  32. Crowe SA, Døssing LN, Beukes NJ et al (2013) Nature 501:535–538CrossRefPubMedGoogle Scholar
  33. Des Marais DJ (2000) Science 289:1703–1705Google Scholar
  34. Di Rienzi S, Sharon I, Wrighton K et al (2013) eLife 2:1–25CrossRefGoogle Scholar
  35. Ducluzeau AL, Schoepp-Cothenet B, van Lis R et al (2014) J. R. Soc. Interface 11Google Scholar
  36. Elderfield, H and Schultz A (1996) Annu. Rev. Earth Planet. Sci 24 pp191-224Google Scholar
  37. Ettwig KF, Butler M, Le Paslier D et al (2010) Nature 464:543–548CrossRefPubMedGoogle Scholar
  38. Ettwig KF, Speth DR, Reimann J et al (2012) Front Microbiol 3:8CrossRefGoogle Scholar
  39. Falkowski PG (2011) Photosynth Res 107:7–10CrossRefPubMedGoogle Scholar
  40. Field CB, Behrenfeld M, Randerson J et al (1998) Science 281:237–240CrossRefPubMedGoogle Scholar
  41. Fischer WW, Knoll AH (2009) Bull Geol Soc Am 121:222–235Google Scholar
  42. Fischer WW, Schroeder S, Lacassie JP et al (2009) Precambrian Res 169:15–27Google Scholar
  43. Fischer WW, Fike DA, Johnson JE et al (2014) PNAS 111:5468–5473PubMedCentralCrossRefPubMedGoogle Scholar
  44. French KL, Hallman C, Hope J et al (2015) PNAS 201419563Google Scholar
  45. Gaillard F, Scaillet B, Arndt NT (2011) Nature 479:229–232CrossRefGoogle Scholar
  46. Gavrilets S, Vose A (2005) PNAS 102:18040–18045PubMedCentralCrossRefPubMedGoogle Scholar
  47. Gavrilets S, Losos JB (2009) Science 323:732–737CrossRefPubMedGoogle Scholar
  48. Glasspool IJ, Scott AC (2010) Nat Geosci 3(9):627–630CrossRefGoogle Scholar
  49. Goldblatt C, Lenton TM, Watson AJ (2006) Nature 443:683–686Google Scholar
  50. Gribaldo S, Talla E, Brochier-Armanet C (2009) Trends Biochem Sci 34:375–381CrossRefPubMedGoogle Scholar
  51. Grotzinger JP, Knoll AH (1999) Annu Rev Earth Planet Sci 27:313–358CrossRefPubMedGoogle Scholar
  52. Guo Q, Strauss H, Kaufman AJ et al (2009) Geology 37:399–402CrossRefGoogle Scholar
  53. Haqq-Misra J, Kasting J, Lee S (2011) Astrobiology 11:293–302PubMedCentralCrossRefPubMedGoogle Scholar
  54. Hartnett H, Keil R, Hedges J et al (1998) Nature 391:572–575CrossRefGoogle Scholar
  55. Hayes JM (1994) Early life on earth. Nobel symposium No. 84. Columbia U.P, New York, pp 220–236Google Scholar
  56. Helz GR, Bura-Nakić E, Mikac N, Ciglenečki I (2011) Chem Geol 284:323–332CrossRefGoogle Scholar
  57. Hoffman PF (2013) Chem Geol 362:143–156CrossRefGoogle Scholar
  58. Hofmann H, Grey K, Hickman AH, Thorpe RI (1999) GSA Bull 111:1256–1262CrossRefGoogle Scholar
  59. Holland HD (1984) The chemical evolution of the atmosphere and oceans. Princeton University PressGoogle Scholar
  60. Holland HD (2002) Geochim Cosmochim Acta 66(21):3811–3826CrossRefGoogle Scholar
  61. Hotinski RM, Kump LR, Najjar RG (2000) Paleoceanography 15:267–279CrossRefGoogle Scholar
  62. Hotinski RM, Bice K, Kump L et al (2001) Geology 29:7–10CrossRefGoogle Scholar
  63. Johnson JE, Webb S, Thomas K et al (2013a) PNAS 110:11238–11243PubMedCentralCrossRefPubMedGoogle Scholar
  64. Johnson JE, Webb S, Thomas K et al (2013b) PNAS 110:E4119–E4120PubMedCentralCrossRefPubMedGoogle Scholar
  65. Johnson JE, Gerpheide A, Lamb M et al (2014) Geol Soc Am Bull 126:813–830CrossRefGoogle Scholar
  66. Jones CA, Crowe S, Sturm A et al (2011) Biogeosciences 8:2977–2991Google Scholar
  67. Karhu JA, Holland HD (1996) Geology 24:867–870CrossRefGoogle Scholar
  68. Kasting JF, Holland HD, Pinto JP (1985) J Geophys Res-Atmos 90:10497–10510CrossRefGoogle Scholar
  69. Kharecha P, Kasting J, Siefert J (2005) Geobiology 3:53–76CrossRefGoogle Scholar
  70. Knoll AH, Golubic S (1992) In: early organic evolution pp 450–462. Springer, HeidelbergGoogle Scholar
  71. Kopp RE, Kirschvink J, Hilburn I et al (2005) PNAS 102(32):11131–11136PubMedCentralCrossRefPubMedGoogle Scholar
  72. Korenaga J. (2006) Archean Geodynamics and Environments, 7-32Google Scholar
  73. Kump, LR and Barley ME (2007) Nature 448pp1033-1036Google Scholar
  74. Laakso TA, Schrag DP (2014) Earth Planet. Sci Lett 388:81–91Google Scholar
  75. Lasaga AC, Ohmoto H (2002) Geochim Cosmochim Acta 66:361–381CrossRefGoogle Scholar
  76. Lécuyer C, Ricard Y (1999) Earth Planet Sci Lett 165:197–211CrossRefGoogle Scholar
  77. Liang MC, Hartman H, Kopp RE et al (2006) PNAS 103:18896–18899PubMedCentralCrossRefPubMedGoogle Scholar
  78. Lyons TW, Reinhard CT, Planavsky NJ (2014) Nature 506:307–315CrossRefPubMedGoogle Scholar
  79. Martin AP, Condon DJ, Prave AR, Lepland A (2013) Earth Sci Rev 127:242–261CrossRefGoogle Scholar
  80. Morford JL, Martin WR, Carney CM (2012) Chem Geol 324–325:73–86CrossRefGoogle Scholar
  81. Nägler TF, Neubert N, Böttcher ME et al (2011) Chem Geol 289:1–11CrossRefGoogle Scholar
  82. Owan T, Cess RD, Ramanathan V (1979) Nature 277:640–642CrossRefGoogle Scholar
  83. Papineau D, Mojzsis S, Schmitt A (2007) Earth planet. Sci Lett 255:188–212Google Scholar
  84. Pavlov AA, Kasting JF (2002) Astrobiology 2(1):27–41CrossRefPubMedGoogle Scholar
  85. Pavlov A, Kasting J, Brown LL et al (2000) J Geophys Res 105:11981–11990Google Scholar
  86. Pavlov AA, Kasting JF, Eigenbrode JL, Freeman KH (2001) Geology 29(11):1003–1006CrossRefGoogle Scholar
  87. Paytan A, Kastner M, Chavez FP (1996) Science 274:1355–1357CrossRefPubMedGoogle Scholar
  88. Planavsky NJ, Asael D, Hofmann A et al (2014) Nat Geosci 7:283–286CrossRefGoogle Scholar
  89. Rainey PB, Travisano M (1998) Nature 394:69–72CrossRefPubMedGoogle Scholar
  90. Rashby SE, Sessions A, Summons R et al (2007) PNAS 104:15099–15104PubMedCentralCrossRefPubMedGoogle Scholar
  91. Rasmussen B, Bekker A, Fletcher IR (2013a) Earth planet. Sci Lett 382:173–180Google Scholar
  92. Rasmussen B, Meier DB, Krapež B, Muhling JR (2013b) Geology 41:435–438CrossRefGoogle Scholar
  93. Ricci JN, Michel A, Newman D (2015) Geobiology 13:267–277CrossRefPubMedGoogle Scholar
  94. Robinson JM (1990) Geology 15:607–610CrossRefGoogle Scholar
  95. Rosing MT (1999) Science 283:674–676CrossRefPubMedGoogle Scholar
  96. Rosing MT, Frei R (2004) Earth Planet Sci Lett 217:237–244CrossRefGoogle Scholar
  97. Sadler PM (1981) J Geogr 89:569–584Google Scholar
  98. Schidlowski M (1983) Precambrian Res 20:319–335CrossRefGoogle Scholar
  99. Schidlowski M, Eichmann R, Junge CE (1975) Precambrian Res 2:1–69CrossRefGoogle Scholar
  100. Schidlowski M, Appel PW, Eichmann R, Junge CE (1979) Geochim Cosmochim Acta 43:189–199CrossRefGoogle Scholar
  101. Schopf JW (1993) Science 260:640–646CrossRefPubMedGoogle Scholar
  102. Schrag DP, Berner RA, Hoffmann PF, Halverson GP (2002) Geochemistry Geophys. Geosystems 3, 1-21Google Scholar
  103. Severinghaus JP, Beaudette R, Headly M et al (2009) Science 324:1431–1434CrossRefPubMedGoogle Scholar
  104. Shih PM (2015) Curr Biol 25:R192–R193CrossRefPubMedGoogle Scholar
  105. Shih PM, Wu D, Latifi A et al (2013) PNAS 110:1053–1058PubMedCentralCrossRefPubMedGoogle Scholar
  106. Shih PM, Hemp J, Ward LM et al (2015) PNAS. SubmittedGoogle Scholar
  107. Soo RM, Skennerton CT, Sekiguchi Y et al (2014) Genome Biol Evol 6:1031–1045PubMedCentralCrossRefPubMedGoogle Scholar
  108. Stefurak EJT, Fischer WW, Lowe DR (2015) Geochim Cosmochim Acta 150:26–52CrossRefGoogle Scholar
  109. Stolper DA, Revsbech NP, Canfield DE (2010) PNAS 107(44):18755–18760PubMedCentralCrossRefPubMedGoogle Scholar
  110. Suwa M, Bender ML (2008) J Geophys Res-Atmos 113:1–9CrossRefGoogle Scholar
  111. Swanner ED, Mloszewska v, Cirpka O et al (2015) Nat. Geosci. 8:126–12130Google Scholar
  112. Touati D (2000) Arch Biochem Biophys 373:1–6CrossRefPubMedGoogle Scholar
  113. Tyrrell T (1999) Nature 400(6744):525–531CrossRefGoogle Scholar
  114. van Ginkel CG, Rikken GB, Kroon AGM, Kengen SWM (1996) Archives of Microbiology 166 pp321-326Google Scholar
  115. Walker JGC, Klein C, Schidlowski M et al (1983) In: Earth’s earliest biosphere: its origin and evolution pp 260–290. Princeton University Press, PrincetonGoogle Scholar
  116. Welander PV, Coleman ML, Sessions AL et al (2010) PNAS 107:8537–8542PubMedCentralCrossRefPubMedGoogle Scholar
  117. Williams HM, Wood BJ, Wade J et al (2012) Earth Planet Sci Lett 321–322:54–63CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations