Advertisement

Prebiotic Alternatives to Proteins: Structure and Function of Hyperbranched Polyesters

  • Irena Mamajanov
  • Michael P. Callahan
  • Jason P. Dworkin
  • George D. Cody
ORIGINS 2014

Abstract

Proteins are responsible multiple biological functions, such as ligand binding, catalysis, and ion channeling. This functionality is enabled by proteins’ three-dimensional structures that require long polypeptides. Since plausibly prebiotic synthesis of functional polypeptides has proven challenging in the laboratory, we propose that these functions may have been initially performed by alternative macromolecular constructs, namely hyperbranched polymers (HBPs), during early stages of chemical evolution. HBPs can be straightforwardly synthesized in one-pot processes, possess globular structures determined by their architecture as opposed to folding in proteins, and have documented ligand binding and catalytic properties. Our initial study focuses on glycerol-citric acid HBPs synthesized via moderate heating in the dry state. The polymerization products consisted of a mixture of isomeric structures of varying molar mass as evidenced by NMR, mass spectrometry and size-exclusion chromatography. Addition of divalent cations during polymerization resulted in increased incorporation of citric acid into the HBPs and the possible formation of cation-oligomer complexes. The chelating properties of citric acid govern the makeup of the resulting polymer, turning the polymerization system into a rudimentary smart material.

Keywords

Hyperbranched polymer Polyester Smart material Protein Size exclusion chromatography 

Notes

Acknowledgments

We thank Dr. Leslie Gelbaum for his help in the design of NMR experiments and Prof. Nicholas Hud for helpful discussions. This work is supported by Simons Foundation Collaboration on the Origin of Life Fellowship SCOL 292864 (I.M.) and Investigator Award SCOL 302497 (M.P.C., J.P.D.), as well as the NASA Astrobiology Institute award to the Carnegie Institution for Science (I.M., G.D.C.) and The Goddard Center for Astrobiology (M.P.C., J.P.D.).

Supplementary material

11084_2015_9430_Fig5_ESM.gif (43 kb)
Figure S1

1H NMR spectra of a) glycerol triacetate; b) glycerol diacetate, mixture of isomers, contains mono- and triacetate c) glycerol monoacetate, mixture of isomers, contains di- and triacetate. The samples were buffered by citric acid. (GIF 42 kb)

11084_2015_9430_MOESM1_ESM.tif (36.6 mb)
High Resolution Image (TIFF 37492 kb)
11084_2015_9430_Fig6_ESM.gif (51 kb)
Figure S2

ACD chemical shift prediction for a characteristic glycerol-citric acid polymer fragment. Predicted a) 1H and b) 13C chemical shifts. (GIF 51 kb)

11084_2015_9430_MOESM2_ESM.tif (17.7 mb)
High Resolution Image (TIFF 18169 kb)
11084_2015_9430_Fig7_ESM.gif (72 kb)
Figure S3

SEC analysis (UV trace) of glycerol-citric acid oligomers synthesized in neat and in the presence of 0.125, 0.25 and 0.5 eqivalents of MgCl2. Similar behavior is observed in the CaCl2, CoCl2, CuCl2, NiCl2 and ZnCl2 systems. (GIF 71 kb)

11084_2015_9430_MOESM3_ESM.tif (14.1 mb)
High Resolution Image (TIFF 14409 kb)

References

  1. Astruc D, Chardac F (2001) Dendritic catalysts and dendrimers in catalysis. Chem Rev 101:2991–3024. doi: 10.1021/cr010323t PubMedCrossRefGoogle Scholar
  2. Berg JM, Tymoczko JL, Stryer L (2012) Biochemistry, 7th edn. W.H. Freeman, New YorkGoogle Scholar
  3. Bernstein MP, Dworkin JP, Sandford SA, Cooper GW, Allamandola LJ (2002) Racemic amino acids from the ultraviolet photolysis of interstellar ice analogues. Nature 416:401–403. doi: 10.1038/416401a PubMedCrossRefGoogle Scholar
  4. Bhyrappa P, Young JK, Moore JS, Suslick KS (1996) Dendrimer-metalloporphyrins: synthesis and catalysis. J Am Chem Soc 118:5708–5711. doi: 10.1021/ja953474k CrossRefGoogle Scholar
  5. Breslow R (1959) On the mechanism of the formose reaction. Tetrahedron Lett 1:22–26. doi: 10.1016/S0040-4039(01)99487-0 CrossRefGoogle Scholar
  6. Butch C, Cope ED, Pollet P, Gelbaum L, Krishnamurthy R, Liotta CL (2013) Production of tartrates by cyanide-mediated dimerization of glyoxylate: a potential abiotic pathway to the citric acid cycle. J Am Chem Soc 135:13440–13445. doi: 10.1021/ja405103r PubMedCentralPubMedCrossRefGoogle Scholar
  7. Changa DM (1983) The binding of free calcium ions in aqueous solution using chelating agents, phosphates and poly(acrylic acid). J Am Oil Chem Soc 60:618–622. doi: 10.1007/BF02679800 CrossRefGoogle Scholar
  8. Chen S, Zhang X-Z, Cheng S-X, Zhuo R-X, Gu Z-W (2008) Functionalized amphiphilic hyperbranched polymers for targeted drug delivery. Biomacromolecules 9:2578–2585. doi: 10.1021/bm800371n PubMedCrossRefGoogle Scholar
  9. Chopra I (2002) Review of state of art of smart structures and integrated systems. AIAA J 40:2145–2187. doi: 10.2514/2.1561 CrossRefGoogle Scholar
  10. Cody GD, Boctor NZ, Hazen RM, Brandes JA, Morowitz HJ, Yoder HS Jr (2001) Geochemical roots of autotrophic carbon fixation: hydrothermal experiments in the system citric acid, H2O-(±FeS)−(±NiS). Geochim Cosmochim Acta 65:3557–3576. doi: 10.1016/S0016-7037(01)00674-3 CrossRefGoogle Scholar
  11. Cooper G, Kimmich N, Belisle W, Sarinana J, Brabham K, Garrel L (2001) Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth. Nature 414:879–883PubMedCrossRefGoogle Scholar
  12. Cooper G, Reed C, Nguyen D, Carter M, Wang Y (2011) Detection and formation scenario of citric acid, pyruvic acid, and other possible metabolism precursors in carbonaceous meteorites. Proc Natl Acad Sci 108:14015–14020. doi: 10.1073/pnas.1105715108 PubMedCentralPubMedCrossRefGoogle Scholar
  13. Fahnestock S, Rich A (1971) Ribosome-catalyzed polyester formation. Science 173(3994):340–343. doi: 10.1126/science.173.3994.340
  14. Fahnestock S, Neumann H, Shashoua V, Rich A (1970) Ribosome-catalyzed ester formation. Biochemistry 9:2477–2483. doi: 10.1021/bi00814a013 PubMedCrossRefGoogle Scholar
  15. Ferris JP, Hill AR, Liu R, Orgel LE (1996) Synthesis of long prebiotic oligomers on mineral surfaces. Nature 381:59–61. doi: 10.1038/381059a0 PubMedCrossRefGoogle Scholar
  16. Flory PJ (1941a) Molecular size distribution in three dimensional polymers. I. Gelation1. J Am Chem Soc 63:3083–3090. doi: 10.1021/ja01856a061 CrossRefGoogle Scholar
  17. Flory PJ (1941b) Molecular size distribution in three dimensional polymers. II. Trifunctional branching units. J Am Chem Soc 63:3091–3096. doi: 10.1021/ja01856a062 CrossRefGoogle Scholar
  18. Flory PJ (1941c) Molecular size distribution in three dimensional polymers. III. Tetrafunctional branching units. J Am Chem Soc 63:3096–3100. doi: 10.1021/ja01856a063 CrossRefGoogle Scholar
  19. Flory PJ (1952) Molecular size distribution in three dimensional polymers. VI. Branched polymers containing A—R—Bf-1 type units. J Am Chem Soc 74:2718–2723. doi: 10.1021/ja01131a008 CrossRefGoogle Scholar
  20. Fox SW, Harada K (1958) Thermal copolymerization of amino acids to a product resembling protein. Science 128:1214PubMedCrossRefGoogle Scholar
  21. Fréchet JMJ, Hawker CJ (1995) Hyperbranched polyphenylene and hyperbranched polyesters: new soluble, three-dimensional, reactive polymers. React Funct Polym 26:127–136. doi: 10.1016/1381-5148(95)00010-D, Proceedings of the 6th International Conference on Polymer Supported Reactions in Organic ChemistryCrossRefGoogle Scholar
  22. Gao C, Yan D (2004) Hyperbranched polymers: from synthesis to applications. Prog Polym Sci 29:183–275. doi: 10.1016/j.progpolymsci.2003.12.002 CrossRefGoogle Scholar
  23. Gao C, Xu Y, Yan D, Chen W (2003) Water-soluble degradable hyperbranched polyesters: novel candidates for drug delivery? Biomacromolecules 4:704–712. doi: 10.1021/bm025738i PubMedCrossRefGoogle Scholar
  24. Halpern JM, Urbanski R, Weinstock AK, Iwig DF, Mathers RT, von Recum HA (2014) A biodegradable thermoset polymer made by esterification of citric acid and glycerol. J Biomed Mater Res A 102:1467–1477. doi: 10.1002/jbm.a.34821 PubMedCentralPubMedCrossRefGoogle Scholar
  25. Hedwig G, Liddle J, Reeves R (1980) Complex formation of nickel (II) ions with citric acid in aqueous solution: a potentiometric and spectroscopic study. Aust J Chem 33:1685–1693CrossRefGoogle Scholar
  26. Hollis JM, Lovas FJ, Jewell PR, Coudert LH (2002) Interstellar antifreeze: ethylene glycol. Astrophys J 571:L59. doi: 10.1086/341148 CrossRefGoogle Scholar
  27. Hu M, Chen M, Li G, Pang Y, Wang D, Wu J, Qiu F, Zhu X, Sun J (2012) Biodegradable hyperbranched polyglycerol with ester linkages for drug delivery. Biomacromolecules 13:3552–3561. doi: 10.1021/bm300966d PubMedCrossRefGoogle Scholar
  28. Kienle RH, van der Meulen PA, Petke FE (1939) The polyhydric alcohol-polybasic acid reaction. III. Further studies of the glycerol-phthalic anhydride reaction. J Am Chem Soc 61:2258–2268. doi: 10.1021/ja01878a001 CrossRefGoogle Scholar
  29. Kim YH, Webster OW (1990) Water soluble hyperbranched polyphenylene: “a unimolecular micelle?”. J Am Chem Soc 112:4592–4593. doi: 10.1021/ja00167a094 CrossRefGoogle Scholar
  30. Kirkorian K, Ellis A, Twyman LJ (2012) Catalytic hyperbranched polymers as enzyme mimics; exploiting the principles of encapsulation and supramolecular chemistry. Chem Soc Rev 41:6138–6159. doi: 10.1039/c2cs35238a PubMedCrossRefGoogle Scholar
  31. Kolhe P, Misra E, Kannan RM, Kannan S, Lieh-Lai M (2003) Drug complexation, in vitro release and cellular entry of dendrimers and hyperbranched polymers. Int J Pharm 259:143–160. doi: 10.1016/S0378-5173(03)00225-4 PubMedCrossRefGoogle Scholar
  32. Kuchkarev AB, Shuikin NI (1956) Mechanism of hydration and dehydration reactions in presence of zinc halides. Bull Acad Sci USSR Div Chem Sci 5:1511–1519. doi: 10.1007/BF01177533 CrossRefGoogle Scholar
  33. Lahav N, White D, Chang S (1978) Peptide formation in the prebiotic era: thermal condensation of glycine in fluctuating clay environments. Science 201(4350):67–69. doi: 10.1126/science.663639
  34. Liu L, Breslow R (2003) Dendrimeric pyridoxamine enzyme mimics. J Am Chem Soc 125:12110–12111. doi: 10.1021/ja0374473 PubMedCrossRefGoogle Scholar
  35. Liu R, Orgel LE (1997) Efficient oligomerization of negatively-charged β-amino acids at −20 °C. J Am Chem Soc 119:4791–4792. doi: 10.1021/ja9702529 PubMedCrossRefGoogle Scholar
  36. Malmström E, Hult A (1996) Kinetics of formation of hyperbranched polyesters based on 2,2-bis(methylol)propionic acid. Macromolecules 29:1222–1228. doi: 10.1021/ma951084c CrossRefGoogle Scholar
  37. Malmström E, Johansson M, Hult A (1995) Hyperbranched aliphatic polyesters. Macromolecules 28:1698–1703. doi: 10.1021/ma00109a049 CrossRefGoogle Scholar
  38. Mamajanov I, MacDonald PJ, Ying J, Duncanson DM, Dowdy GR, Walker CA, Engelhart AE, Fernández FM, Grover MA, Hud NV, Schork FJ (2014) Ester formation and hydrolysis during wet–dry cycles: generation of far-from-equilibrium polymers in a model prebiotic reaction. Macromolecules 47:1334–1343. doi: 10.1021/ma402256d CrossRefGoogle Scholar
  39. Martin RB (1998) Free energies and equilibria of peptide bond hydrolysis and formation. Biopolymers 45:351–353. doi: 10.1002/(SICI)1097-0282(19980415)45:5<351::AID-BIP3>3.0.CO;2-K CrossRefGoogle Scholar
  40. Miller SL, Urey HC (1959) Organic Compound Synthes on the Primitive Eart Several questions about the origin of life have been answered, but much remains to be studied. Science 130(3370):245–251. doi: 10.1126/science.130.3370.245
  41. Morowitz HJ, Kostelnik JD, Yang J, Cody GD (2000) The origin of intermediary metabolism. Proc Natl Acad Sci 97:7704–7708. doi: 10.1073/pnas.110153997 PubMedCentralPubMedCrossRefGoogle Scholar
  42. Müller B, Kläger W, Kubitzki G (1997) Metal chelates of citric acid as corrosion inhibitors for zinc pigment. Corros Sci 39:1481–1485. doi: 10.1016/S0010-938X(97)00061-9 CrossRefGoogle Scholar
  43. Newkome G, Young J, Baker G (1993) Cascade polymers. 35. pH dependence of hydrodynamic radii of acid-terminated dendrimers. Macromolecules 26:2394–2396. doi: 10.1021/ma00061a041 CrossRefGoogle Scholar
  44. Orgel LE (2003) Some consequences of the RNA world hypothesis. Orig Life Evol Biosph 33:211–218. doi: 10.1023/A:1024616317965 PubMedCrossRefGoogle Scholar
  45. Peltzer ET, Bada JL (1978) α-hydroxycarboxylic acids in the Murchison meteorite. Nature 272:443–444. doi: 10.1038/272443a0 CrossRefGoogle Scholar
  46. Pizzarello S, Wang Y, Chaban GM (2010) A comparative study of the hydroxy acids from the Murchison, GRA 95229 and LAP 02342 meteorites. Geochim Cosmochim Acta 74:6206–6217. doi: 10.1016/j.gca.2010.08.013 CrossRefGoogle Scholar
  47. Prabaharan M, Grailer JJ, Pilla S, Steeber DA, Gong S (2009) Folate-conjugated amphiphilic hyperbranched block copolymers based on Boltorn® H40, poly(l-lactide) and poly(ethylene glycol) for tumor-targeted drug delivery. Biomaterials 30:3009–3019. doi: 10.1016/j.biomaterials.2009.02.011 PubMedCrossRefGoogle Scholar
  48. Ricardo A, Frye F, Carrigan MA, Tipton JD, Powell DH, Benner SA (2006) 2-hydroxymethylboronate as a reagent to detect carbohydrates: application to the analysis of the formose reaction. J Org Chem 71:9503–9505. doi: 10.1021/jo061770h PubMedCrossRefGoogle Scholar
  49. Sagi VN, Punna V, Hu F, Meher G, Krishnamurthy R (2012) Exploratory experiments on the chemistry of the “glyoxylate scenario”: formation of ketosugars from dihydroxyfumarate. J Am Chem Soc 134:3577–3589. doi: 10.1021/ja211383c PubMedCentralPubMedCrossRefGoogle Scholar
  50. Schneider-Bernloehr H, Lohrmann R, Sulston J, Weimann BJ, Orgel LE, Miles HT (1968) Non-enzymic synthesis of deoxyadenylate oligonucleotides on a polyuridylate template. J Mol Biol 37:151–155. doi: 10.1016/0022-2836(68)90079-X PubMedCrossRefGoogle Scholar
  51. Schwartz A, Fox S (1964) Thermal synthesis of internucleotide phosphodiester linkages. Biochim Biophys Acta 87:694. doi: 10.1016/0926-6550(64)90290-7 PubMedGoogle Scholar
  52. Schwendinger MG, Tattler R, Saetia S, Liedl KR, Kroemer RT, Rode BM (1995) Salt induced peptide formation: on the selectivity of the copper induced peptide formation under possible prebiotic conditions. Inorg Chim Acta 228:207–214. doi: 10.1016/0020-1693(94)04186-Y CrossRefGoogle Scholar
  53. Singh RP, Yeboah YD, Pambid ER, Debayle P (1991) Stability constant of the calcium-citrate(3-) ion pair complex. J Chem Eng Data 36:52–54. doi: 10.1021/je00001a015 CrossRefGoogle Scholar
  54. Tasaka F, Ohya Y, Ouchi T (2001) One-pot synthesis of novel branched polylactide through the copolymerization of lactide with mevalonolactone. Macromol Rapid Commun 22:820–824. doi: 10.1002/1521-3927(20010701)22:11<820::AID-MARC820>3.0.CO;2-7 CrossRefGoogle Scholar
  55. Weber AL (1989) Thermal synthesis and hydrolysis of polyglyceric acid. Orig Life Evol Biosph 19:7–19. doi: 10.1007/BF01808284 PubMedCrossRefGoogle Scholar
  56. Weber AL, Orgel LE (1978) Amino acid activation with adenosine 5′-phosphorimidazolide. J Mol Evol 11:9–16. doi: 10.1007/BF01768020 PubMedCrossRefGoogle Scholar
  57. Weimann BJ, Lohrmann R, Orgel LE, Schneider-Bernloehr H, Sulston JE (1968) Template-directed synthesis with adenosine-5′-phosphorimidazolide. Science 161(3839):387. doi: 10.1126/science.161.3839.387
  58. Williams RJ, Gabriel A, Andrews RC (1928) The relation between the hydrolysis equilibrium constant of esters and the strengths of the corresponding acids. J Am Chem Soc 50:1267–1271. doi: 10.1021/ja01392a005 CrossRefGoogle Scholar
  59. Wooley KL, Hawker CJ, Lee R, Fréchet JMJ (1994) One-step synthesis of hyperbranched polyesters. Molecular weight control and chain end functionalization. Polym J 26:187–197. doi: 10.1295/polymj.26.187 CrossRefGoogle Scholar
  60. Zelenin OY (2007) Interaction of the Ni2+ ion with citric acid in an aqueous solution. Russ J Coord Chem 33:346–350. doi: 10.1134/S1070328407050065 CrossRefGoogle Scholar
  61. Zhou Z-H, Deng Y-F, Wan H-L (2005) Structural diversities of Cobalt(II) coordination polymers with citric acid. Cryst Growth Des 5:1109–1117. doi: 10.1021/cg0496282 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Irena Mamajanov
    • 1
  • Michael P. Callahan
    • 2
  • Jason P. Dworkin
    • 2
  • George D. Cody
    • 1
  1. 1.Geophysical LaboratoryCarnegie Institution for ScienceWashingtonUSA
  2. 2.Solar System Exploration Division and The Goddard Center for AstrobiologyNational Aeronautics and Space Administration Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations