Advertisement

Predicting Three-Dimensional Conformations of Peptides Constructed of Only Glycine, Alanine, Aspartic Acid, and Valine

  • Akifumi OdaEmail author
  • Shuichi Fukuyoshi
ORIGINS 2014

Abstract

The GADV hypothesis is a form of the protein world hypothesis, which suggests that life originated from proteins (Lacey et al. 1999; Ikehara 2002; Andras 2006). In the GADV hypothesis, life is thought to have originated from primitive proteins constructed of only glycine, alanine, aspartic acid, and valine ([GADV]-proteins). In this study, the three-dimensional (3D) conformations of randomly generated short [GADV]-peptides were computationally investigated using replica-exchange molecular dynamics (REMD) simulations (Sugita and Okamoto 1999). Because the peptides used in this study consisted of only 20 residues each, they could not form certain 3D structures. However, the conformational tendencies of the peptides were elucidated by analyzing the conformational ensembles generated by REMD simulations. The results indicate that secondary structures can be formed in several randomly generated [GADV]-peptides. A long helical structure was found in one of the hydrophobic peptides, supporting the conjecture of the GADV hypothesis that many peptides aggregated to form peptide multimers with enzymatic activity in the primordial soup. In addition, these results indicate that REMD simulations can be used for the structural investigation of short peptides.

Keywords

GADV hypothesis Protein structure prediction Secondary structure formation Replica-exchange molecular dynamics simulation 

Notes

Acknowledgments

Parts of the computations were performed by the Research Center for Computational Science, Okazaki. This work was supported by a grant-in-aid for scientific research [26460034] from the Japan Society for the Promotion of Science.

References

  1. Ajay, Murcko MA (1995) Computational methods to predict binding free energy in ligand-receptor complexes. J Med Chem 38:4953–4967. doi: 10.1021/jm00026a001 PubMedCrossRefGoogle Scholar
  2. Andras P (2006) The protein interaction world hypothesis of the origins of life. Viva Origino 34:40–50Google Scholar
  3. Case DA (2005) Re: AMBER: value of SALTCON. Amber mailing list archive. http://archive.ambermd.org/200504/0085.html. Accessed 7 Jan 2015
  4. Case DA, Darden TA, Cheatham TA III et al (2012) AMBER 12. University of California, San FranciscoGoogle Scholar
  5. Crick FHC, Griffith JS, Orgel LE (1957) Codes without commas. Proc Natl Acad Sci U S A 43:416–421PubMedCentralPubMedCrossRefGoogle Scholar
  6. Dyson F (1985) Origin of life. Cambridge University Press, CambridgeGoogle Scholar
  7. Ferris JP, Hill AR Jr, Liu R, Orgel LE (1996) Synthesis of long prebiotic oligomers on mineral surfaces. Nature 381:59–61. doi: 10.1038/381059a0 PubMedCrossRefGoogle Scholar
  8. Futamura Y, Yamamoto K (2005) Hydrothermal synthesis of oligoglycines with adiabatic expansion cooling. Viva Origino 33:269–274Google Scholar
  9. Huang C (2002) DMS. University of California, San FranciscoGoogle Scholar
  10. Ikebe J, Kamiya N, Ito J, Shindo H, Higo J (2007) Simulation study on the disordered state of an Alzheimer’s β amyloid peptide Aβ(12–36) in water consisting of random-structural, β-structural, and helical clusters. Protein Sci 16:1596–1608. doi: 10.1110/ps.062721907 PubMedCentralPubMedCrossRefGoogle Scholar
  11. Ikehara K (2002) Origins of gene, genetic code, protein and life: comprehensive view of life systems from a GNC-SNS primitive genetic code hypothesis. J Biosci 27:165–186. doi: 10.1007/BF02703773 PubMedCrossRefGoogle Scholar
  12. Ikehara K (2005) Possible steps to the emergence of life: the [GADV]-protein world hypothesis. Chem Rec 5:107–118. doi: 10.1002/tcr.20037 PubMedCrossRefGoogle Scholar
  13. Ikehara K (2009) Pseudo-replication of [GADV]-proteins and origin of life. Int J Mol Sci 10:1525–1537. doi: 10.3390/ijms10041525 PubMedCentralPubMedCrossRefGoogle Scholar
  14. Ikehara K, Omori Y, Arai R, Hirose A (2002) A novel theory on the origin of the genetic code: a GNC-SNS hypothesis. J Mol Evol 54:530–538. doi: 10.1007/s00239-001-0053-6 PubMedCrossRefGoogle Scholar
  15. Imai E, Honda H, Hatori K, Brack A, Matsuno K (1999) Elongation of oligopeptides in a simulated submarine hydrothermal system. Science 283:831–833. doi: 10.1126/science.283.5403.831 PubMedCrossRefGoogle Scholar
  16. Jin L, Briggs SL, Chandrasekhar S, Chirgadze NY, Clawson DK, Schevitz RW, Smiley DL, Tashjian AH, Zhang F (2000) Crystal structure of human parathyroid hormone 1–34 at 0.9 Å resolution. J Biol Chem 275:27238–27244. doi: 10.1074/jbc.M001134200 PubMedGoogle Scholar
  17. Jordan IK, Kondrashov FA, Adzhubel IA, Wolf YI, Koonin EV, Kondrashov AS, Sunyaev S (2005) A universal trend of amino acid gain and loss in protein evolution. Nature 433:633–638. doi: 10.1038/nature03306 PubMedCrossRefGoogle Scholar
  18. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637. doi: 10.1002/bip.360221211 PubMedCrossRefGoogle Scholar
  19. Kobayashi K, Kaneko T, Saito T, Oshima T (1998) Amino acid formation in gas mixtures by high energy particle irradiation. Orig Life Evol Biosph 28:155–165. doi: 10.1023/A:1006561217063 PubMedCrossRefGoogle Scholar
  20. Kobayashi K, Kaneko T, Saito T (1999) Characterization of complex organic compounds formed in simulated planetary atmospheres by the action of high energy particles. Adv Space Res 24:461–464. doi: 10.1016/S0273-1177(99)00088-5 PubMedCrossRefGoogle Scholar
  21. Kobayashi K, Kaneko T, Takahashi J, Takano Y, Yoshida S (2010) High molecular weight complex organics in interstellar space and their relevance to origins of life. In: Basiuk V (ed) Astrobiology: from simple molecules to primitive life. American Scientific Publishers, Valencia, pp 175–186Google Scholar
  22. Lacey JC, Cook GW, Mullins DW (1999) Concepts related to the origin of coded protein synthesis. Chemtracts 12:398–418Google Scholar
  23. Lönnberg H (2011) Cleavage of RNA phosphodiester bonds by small molecular entities: a mechanistic insight. Org Biomol Chem 9:1687–1703. doi: 10.1039/C0OB00486C PubMedCrossRefGoogle Scholar
  24. Miller SL (1953) A production of amino acids under possible primitive earth conditions. Science 117:528–529. doi: 10.1126/science.117.3046.528 PubMedCrossRefGoogle Scholar
  25. Mongan J, Simmerling C, McCammon JA, Case DA, Onufriev A (2006) Generalized Born model with a simple, robust molecular volume correction. J Chem Theory Comput 3:156–169. doi: 10.1021/ct600085e CrossRefGoogle Scholar
  26. Nguyen H, Roe DR, Simmerling C (2013) Improved generalized Born solvent model parameters for protein simulations. J Chem Theory Comput 9:2020–2034. doi: 10.1021/ct3010485 PubMedCentralPubMedCrossRefGoogle Scholar
  27. Oba T, Fukushima J, Maruyama M, Iwamoto R, Ikehara K (2005) Catalytic activities of [GADV]-peptides. Formation and establishment of [GADV]-protein world for the emergence of life. Orig Life Evol Biosph 35:447–460. doi: 10.1007/s11084-005-3519-5 PubMedCrossRefGoogle Scholar
  28. Oda A, Yamaotsu N, Hirono S (2009) Evaluation of the searching abilities of HBOP and HBSITE for binding pocket detection. J Comput Chem 30:2728–2737. doi: 10.1002/jcc.21299 PubMedCrossRefGoogle Scholar
  29. Oda A, Kobayashi K, Takahashi O (2011) Comparison of molecular dynamics simulation methods for amyloid β1–42 monomers containing d-aspartic acid residues for predicting retention times in chromatography. J Chromatogr B 873:3337–3343. doi: 10.1016/j.jchromb.2011.08.011 CrossRefGoogle Scholar
  30. Oda A, Fukuyoshi S, Nakagaki R (2013) Structural prediction of [GADV]-proteins using threading and ab initio modeling for investigations of the origin of life. J Comput Aided Chem 14:23–35. doi: 10.2751/jcac.14.23 CrossRefGoogle Scholar
  31. Oshima T (2011) Magic 20 and the origins of life. Viva Origino 39:45–47Google Scholar
  32. Palm K, Stenberg P, Luthman K, Artursson P (1997) Polar molecular surface properties predict the intestinal absorption of drugs in humans. Pharm Res 14:568–571. doi: 10.1023/A:1012188625088 PubMedCrossRefGoogle Scholar
  33. Richards FM (1977) Areas, volumes, packing, and protein structure. Ann Rev Biophys Bioeng 6:151–176. doi: 10.1146/annurev.bb.06.060177.001055 CrossRefGoogle Scholar
  34. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341. doi: 10.1016/0021-9991(77)90098-5 CrossRefGoogle Scholar
  35. Schlesinger G, Miller SL (1983) Prebiotic synthesis in atmospheres containing CH4, CO, and CO2. I. Amino acids. J Mol Evol 19:376–382. doi: 10.1007/BF02101642 PubMedCrossRefGoogle Scholar
  36. Sugita Y, Okamoto Y (1999) Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 314:141–151. doi: 10.1016/S0009-2614(99)01123-9 CrossRefGoogle Scholar
  37. Takahashi J, Hosokawa T, Masuda H, Kaneko T, Kobayashi K, Saito T, Utsumi Y (1999) Abiotic synthesis of amino acids by x-ray irradiation of simple inorganic gases. Appl Phys Lett 74:877–879. doi: 10.1063/1.123396 CrossRefGoogle Scholar
  38. van der Gulik P, Massar S, Gilis D, Buhrman H, Rooman M (2009) The first peptides: the evolutionary transition between prebiotic amino acids and early proteins. J Theor Biol 261:531–539. doi: 10.1016/j.jtbi.2009.09.004 PubMedCrossRefGoogle Scholar
  39. Vékey K, Somogyi Á, Wysocki VH (1996) Average activation energies of low-energy fragmentation processes of protonated peptides determined by a new approach. Rapid Commun Mass Spectrom 10:911–918. doi: 10.1002/(SICI)1097-0231(19960610)10:8<911::AID-RCM593>3.0.CO;2-7 PubMedCrossRefGoogle Scholar
  40. Xu D, Zhang Y (2012) Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field. Proteins 80:1715–1735. doi: 10.1002/prot.24065 PubMedCentralPubMedCrossRefGoogle Scholar
  41. Yamaotsu N, Oda A, Hirono S (2008) Determination of ligand-binding sites on proteins using long-range hydrophobic potential. Biol Pharm Bull 31:1552–1558. doi: 10.1248/bpb.31.1552 PubMedCrossRefGoogle Scholar
  42. Zuckerkandl E, Derancourt J, Vogel H (1971) Mutational trends and random processes in the evolution of informational macromolecules. J Mol Biol 59:473–490. doi: 10.1016/0022-2836(71)90311-1 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Institute of Medical, Pharmaceutical and Health SciencesKanazawa UniversityKanazawaJapan
  2. 2.Institute for Protein ResearchOsaka UniversitySuitaJapan

Personalised recommendations