Anisotropy-Guided Enantiomeric Enhancement in AlanineUsing Far-UV Circularly Polarized Light

  • Cornelia Meinert
  • Patrick Cassam-Chenaï
  • Nykola C. Jones
  • Laurent Nahon
  • Søren V. Hoffmann
  • Uwe J. Meierhenrich


All life on Earth is characterized by its asymmetry – both the genetic material and proteins are composed of homochiral monomers. Understanding how this molecular asymmetry initially arose is a key question related to the origins of life. Cometary ice simulations, l-enantiomeric enriched amino acids in meteorites and the detection of circularly polarized electromagnetic radiation in star-forming regions point to a possible interstellar/protostellar generation of stereochemical asymmetry. Based upon our recently recorded anisotropy spectra g(λ) of amino acids in the vacuum-UV range, we subjected amorphous films of racemic 13C-alanine to far-UV circularly polarized synchrotron radiation to probe the asymmetric photon-molecule interaction under interstellar conditions. Optical purities of up to 4 % were reached, which correlate with our theoretical predictions. Importantly, we show that chiral symmetry breaking using circularly polarized light is dependent on both the helicity and the wavelength of incident light. In order to predict such stereocontrol, time-dependent density functional theory was used to calculate anisotropy spectra. The calculated anisotropy spectra show good agreement with the experimental ones. The European Space Agency’s Rosetta mission, which successfully landed Philae on comet 67P/Churyumov-Gerasimenko on 12 November 2014, will investigate the configuration of chiral compounds and thereby obtain data that are to be interpreted in the context of the results presented here.


Amino acids Anisotropy Homochirality Asymmetric photolysis Origins of life Chiral photons 



We are grateful to the general technical staff of the ASTRID synchrotron and for technical and beam line assistance at the SOLEIL facilities. This work was supported by the Agence Nationale de la Recherche (ANR-07-BLAN-0293 and ANR-12-IS07-0006). This work was furthermore supported by the I3 Integrated Activity on Synchrotron and Free Electron Laser Science (IA-SFS), contract no. RII3-CT-2004-506008, under the Research Infrastructure Action of the FP6 EC program Structuring the European Research Area as well as the European Community’s Seventh Framework Program (FP7/2007–2013; grant no. 226716).

Conflicts of Interest

All authors are requested to disclose any actual or potential conflict of interest including any financial, personal or other relationships with other people or organizations


  1. Bailey J, Chrysostomou A, Hough JH, Gledhill TM, McCall A, Clark S, Ménard F, Tamura M (1998) Circular polarization in star-formation regions: Implications for biomolecular homochirality. Science 281:672–674CrossRefGoogle Scholar
  2. Balavoine G, Moradpour A, Kagan HB (1974) Preparation of chiral compounds with high optical purity by irradiation with circularly polarized light, a model reaction for the prebiotic generation of optical activity. J Am Chem Soc 96:5152–5158CrossRefGoogle Scholar
  3. Bernstein MP, Dworkin JP, Sandford SA, Cooper GW, Allamandola LJ (2002) Racemic amino acids from the ultraviolet photolysis of interstellar ice analogues. Nature 416:401–403PubMedCrossRefGoogle Scholar
  4. Brack A (1998) The molecular origins of life – assembling the pieces of the puzzle. Cambridge University Press, CambridgeGoogle Scholar
  5. Cassam-Chenaï P (2006) On non-adiabatic potential energy surfaces. Chem Phys Lett 420:354–357CrossRefGoogle Scholar
  6. Cassam-Chenaï P, Wolff SK, Chandler GS, Figgis BN (1996) Ensemble-representable densities for atoms and molecules. II. Application to CoCl4 . Int J Quantum Chem 60:667–680CrossRefGoogle Scholar
  7. Chrysostomou A, Lucas PW, Hough JH (2007) Circular polarimetry reveals helical magnetic fields in the young stellar object HH 135–136. Nature 450:71–73PubMedCrossRefGoogle Scholar
  8. Chyba CF, Thomas PJ, Brookshaw L, Sagan C (1990) Cometary delivery of organic molecules to the early Earth. Science 249:366–373PubMedCrossRefGoogle Scholar
  9. Cronin JR, Pizzarello S (1997) Enantiomeric excesses in meteoritic amino acids. Science 275:951–955PubMedCrossRefGoogle Scholar
  10. De Marcellus P, Meinert C, Nuevo M, Filippi J-J, Danger G, Deboffle D, Nahon L, d’Hendecourt L, Meierhenrich UJ (2011) Non-racemic amino acid production by UV irradiation of achiral interstellar ice analogs with circularly polarized light. Astrophys J Lett 727:L27 (6 pp)CrossRefGoogle Scholar
  11. Evans AC, Meinert C, Giri C, Goesmann F, Meierhenrich UJ (2012) Chirality, photochemistry and the detection of amino acids in interstellar ice analogues and comets. Chem Soc Rev 41:5447–5458PubMedCrossRefGoogle Scholar
  12. Evans AC, Meinert C, Bredehöft JH, Giri C, Jones NC, Hoffmann SV, Meierhenrich UJ (2013) Anisotropy spectra for chiral differentiation of biomolecular building blocks. Top Curr Chem 341:271–300PubMedGoogle Scholar
  13. Flores JJ, Bonner WA, Massey GA (1977) Asymmetric photolysis of (RS)-leucine with circularly polarized ultraviolet light. J Am Chem Soc 99:3622–3625PubMedCrossRefGoogle Scholar
  14. Gaussian 03, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR,Montgomery Jr. JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA et al. (2004) Gaussian, Inc., Wallingford CTGoogle Scholar
  15. Glavin DP, Dworkin JP (2009) Enrichment of the amino acid l-isovaline by aqueous alteration on CI and CM meteorite parent bodies. Proc Natl Acad Sci 106:5487–5492PubMedCentralPubMedCrossRefGoogle Scholar
  16. Goesmann F, Rosenbauer H, Roll R, Szopa C, Raulin F, Sternberg R, Israel G, Meierhenrich UJ, Thiemann W, Muñoz Caro GM (2007) COSAC, The cometary sampling and composition experiment on Philae. Space Sci Rev 128:257–280CrossRefGoogle Scholar
  17. Goesmann F, Raulin F, Bredehöft JH, Cabane M, Ehrenfreund P, MacDermott AJ, McKenna-Lawlor S, Meierhenrich UJ, Muñoz Caro GM, Szopa C, Sternberg R, Roll R, Thiemann WHP, Ulamec S (2014) COSAC prepares for sampling and in situ analysis of cometary matter from comet 67P/Churyumov-Gerasimenko. Planet Space Sci 103:318–330CrossRefGoogle Scholar
  18. Inoue Y, Ramamurthy V (2004) Chiral photochemistry. Marcel Dekker, New YorkCrossRefGoogle Scholar
  19. Kaneko F, Yagi-Watanabe K, Tanaka M, Nakagawa K (2009) Natural circular dichroism spectra of alanine and valine films in vacuum ultraviolet region. J Phys Soc Jpn 78:013001CrossRefGoogle Scholar
  20. Kitayama T, Kiyonaga H, Morihashi K, Takahashi O, Kikuchi O (2002) Ab initio spin-orbit coupling SCF calculation of parity-violating energy of chiral molecules. J Mol Struct Theochem 589–590:183–193CrossRefGoogle Scholar
  21. Kuhn W (1929) Quantitative relationships for natural optical activity. Phys Chem B 4:14–36Google Scholar
  22. Kwon J, Tamura M, Hough JH, Kusakabe N, Nagata T, Nakajima Y, Lucas PW, Nagayama T, Kandori R (2014) Near-infrared circular polarization survey in star-forming regions: correlations and trends. Astrophys J Lett 795:L16 (7 pp)CrossRefGoogle Scholar
  23. Mason SF (1997) Extraterrestrial handedness. Nature 389:804PubMedCrossRefGoogle Scholar
  24. Meierhenrich UJ (2015) Comets and their origin – the tool to decipher a comet. Wiley-VCH, WeinheimGoogle Scholar
  25. Meierhenrich UJ, Thiemann WH-P, Rosenbauer H (1999) Molecular parity violation via comets? Chirality 11:575–582PubMedCrossRefGoogle Scholar
  26. Meierhenrich UJ, Thiemann WH-P, Goesmann F, Roll R, Rosenbauer H (2001a) Enantiomer separation of hydrocarbons in preparation of Rosetta’s ‘chirality-experiment’. Chirality 13:454–457PubMedCrossRefGoogle Scholar
  27. Meierhenrich UJ, Thiemann WH-P, Rosenbauer H (2001b) Pyrolytic methylation assisted Enantioseparation of Chiral Hydroxycarboxylic Acids. J Anal Appl Pyrol 60:13–26CrossRefGoogle Scholar
  28. Meierhenrich UJ, Nguyen M-J, Barbier B, Brack A, Thiemann WH-P (2003) Gas chromatographic separation of saturated aliphatic hydrocarbon enantiomers on permethylated β-cyclodextrin. Chirality 15:13–16CrossRefGoogle Scholar
  29. Meierhenrich UJ, Filippi J-J, Meinert C, Hoffmann SV, Bredehöft JH, Nahon L (2010) Photolysis of rac-leucine with circularly polarized synchrotron radiation. Chem Biodivers 7:1651–1659PubMedCrossRefGoogle Scholar
  30. Meierhenrich UJ, Cason JRL, Szopa C, Sternberg R, Raulin F, Thiemann WH-P, Goesmann F (2013) Evaluating the robustness of the enantioselective stationary phases on the Rosetta mission against space vacuum vaporization. Adv Space Res 52:2080–2084CrossRefGoogle Scholar
  31. Meinert C, Meierhenrich UJ (2014) Derivatization and multidimensional gas-chromatographic resolution of α-alkyl and α-dialkyl amino acid enantiomers. ChemPlusChem 79:781–785CrossRefGoogle Scholar
  32. Meinert C, de Marcellus P, Sergeant L, D’Hendecourt L, Nahon L, Jones NC, Hoffman SV, Bredehöft JH, Meierhenrich UJ (2011) Photochirogenesis: Photochemical models on the absolute asymmetric formation of amino acids in interstellar space. Phys Life Rev 8(307–330):337–338CrossRefGoogle Scholar
  33. Meinert C, Filippi J-J, de Marcellus P, Le Sergeant d’Hendecourt L, Meierhenrich UJ (2012a) N-(2-Aminoethyl)glycine and amino Acids in interstellar ice analogues. ChemPlusChem 77:186–191CrossRefGoogle Scholar
  34. Meinert C, Bredehöft JH, Filippi J-J, Baraud Y, Nahon L, Wien F, Jones NC, Hoffmann SV, Meierhenrich UJ (2012b) Anisotropy spectra of amino acids. Angew Chem 124: 4562–4565. Angew Chem Int Ed 51:4484–4487CrossRefGoogle Scholar
  35. Meinert C, Hoffman SV, Cassam-Chenaï P, Evans AC, Giri C, Nahon L, Meierhenrich UJ (2014) Photon-energy-controlled symmetry breaking with circularly polarized light. Angew Chem 126:214–218. Angew Chem Int Ed 53:210–214CrossRefGoogle Scholar
  36. Modica P, Meinert C, deMarcellus P, Nahon L, Meierhenrich UJ, Le Sergeant d’Hendecourt L (2014) Enantiomeric excesses induced in amino acids by ultraviolet circularly polarized light irradiation of extraterrestrial ice analogs: A possible source of asymmetry for prebiotic chemistry. Astrophys J 788:79 (11 pp)CrossRefGoogle Scholar
  37. Muñoz Caro GM, Meierhenrich UJ, Schutte WA, Barbler B, Segovia AA, Rosenbauer H, Thiemann WHP, Brack A, Greenberg JM (2002) Amino acids from ultraviolet irradiation of interstellar ice analogues. Nature 416:403–406PubMedCrossRefGoogle Scholar
  38. Myrgorodska I, Meinert C, Martins Z, Le Sergeant d’Hendecourt L, Meierhenrich UJ (2014) Molecular chirality in meteorites and interstellar ices, and the chirality-experiment onboard ESA’s cometary rosetta mission. Angew Chem Int Ed 53, doi: 10.1002/anie.201409354.
  39. Nahon L, de Oliveira N, Garcia GA, Gil JF, Pilette O, Marcouille B, Lagarde F, Polack F (2012) DESIRS: a state-of-the-art VUV beamline featuring high resolution and variable polarization for spectroscopy and dichroism at SOLEIL. J Synchrotron Radiat 19:508–520PubMedCrossRefGoogle Scholar
  40. Oró J (1961) Comets and formation of biochemical compounds on primitive Earth. Nature 190:389–390CrossRefGoogle Scholar
  41. Pizzarello S, Cronin JR (2000) Non-racemic amino acids in the Murray and Murchison meteorites. Geochim Cosmochim Acta 64:329–338PubMedCrossRefGoogle Scholar
  42. Pizzarello S, Huang Y, Alexandre MDR (2008) Molecular asymmetry in extraterrestrial chemistry: Insights from a pristine meteorite. Proc Natl Acad Sci U S A 105:7300–7304CrossRefGoogle Scholar
  43. Robitaille TP, Whitney AW, Indebetouw R, Wood K, Denzmore P (2006) Interpreting spectral enery distributions from young stellar objects. I. A grid of 200,000 YSO model SEDs. JApJS 167:256–285Google Scholar
  44. Santoro F, Lami A, Improta R, Bloino J, Barone V (2008) Effective method for the computation of optical spectra of large molecules at finite temperature including the Duschinsky and Herzberg–Teller effect: The Q x band of porphyrin as a case study. J Chem Phys 128:224–311CrossRefGoogle Scholar
  45. Szopa C, Sternberg R, Coscia D, Goesmann F, Gomes R, Legrand S, Jerome M, Meierhenrich UJ, Raulin F (2014) Gas chromatography for in situ analysis of a cometary nucleus V. Study of capillary columns robustness submitted to long term reduced environmental pressure conditions. J Chromatogr A 1368:211–216PubMedCrossRefGoogle Scholar
  46. Thiemann WH-P, Meierhenrich UJ (2001) ESA mission ROSETTA will probe for chirality of cometary amino acids. Orig Life Evol Biosph 31:199–210PubMedCrossRefGoogle Scholar
  47. Thiemann WH-P, Rosenbauer H, Meierhenrich UJ (2001) Conception of the ‘Chirality-experiment’ on ESA’s mission ROSETTA to comet 46P/wirtanen. Adv Space Res 27:323–328PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Cornelia Meinert
    • 1
  • Patrick Cassam-Chenaï
    • 2
  • Nykola C. Jones
    • 3
  • Laurent Nahon
    • 4
  • Søren V. Hoffmann
    • 3
  • Uwe J. Meierhenrich
    • 1
  1. 1.Institut de Chimie de Nice ICN, CNRS UMR 7272Université de Nice Sophia AntipolisNiceFrance
  2. 2.Laboratoire J. A. Dieudonné, CNRS UMR 7351Université de Nice Sophia AntipolisNiceFrance
  3. 3.Institute for Storage Ring Facilities (ISA), Dept. of Physics and AstronomyAarhus UniversityAarhus CDenmark
  4. 4.Synchrotron SOLEILGif-sur-YvetteFrance

Personalised recommendations