Water, Air, Earth and Cosmic Radiation

  • Marie-Paule BassezEmail author


In the context of the origin of life, rocks are considered mainly for catalysis and adsorption-desorption processes. Here it is shown how some rocks evolve in energy and might induce synthesis of molecules of biological interest. Radioactive rocks are a source of thermal energy and water radiolysis producing molecular hydrogen, H2. Mafic and ultramafic rocks evolve in water and dissolved carbon dioxide releasing thermal energy and H2. Peridotites and basalts contain ferromagnesian minerals which transform through exothermic reactions with the generation of heat. These reactions might be triggered by any heating process such as radioactive decay, hydrothermal and subduction zones or post-shock of meteorite impacts. H2 might then be generated from endothermic hydrolyses of the ferromagnesian minerals olivine and pyroxene. In both cases of mafic and radioactive rocks, production of CO might occur through high temperature hydrogenation of CO2. CO, instead of CO2, was proven to be necessary in experiments synthesizing biological-type macromolecules with a gaseous mixture of CO, N2 and H2O. In the geological context, N2 is present in the environment, and the activation source might arise from cosmic radiation and/or radionuclides. Ferromagnesian and radioactive rocks might consequently be a starting point of an hydrothermal chemical evolution towards the abiotic formation of biological molecules. The two usually separate worlds of rocks and life are shown to be connected through molecular and thermodynamic chemical evolution. This concept has been proposed earlier by the author (Bassez J Phys: Condens Matter 15:L353–L361, 2003, 2008a, 2008b; Bassez Orig Life Evol Biosph 39(3–4):223–225, 2009; Bassez et al. 2011; Bassez et al. Orig Life Evol Biosph 42(4):307–316, 2012, Bassez 2013) without thermodynamic details. This concept leads to signatures of prebiotic chemistry such as radionuclides and also iron and magnesium carbonates associated with serpentine and/or talc, which were discussed at the 2014 European Astrobiology Network Association conference on Signatures of Life.


Origin of Life Prebiotic chemistry Geochemistry Physical-chemistry Exobiology Astrobiology 



Marie-Paule Bassez thanks Michel Cassir and Kevin Ogle, Ecole Nationale Supérieure de Chimie de Paris, for discussions on E-pH diagrams.


  1. Aaberg I, Dideriksen K, Rodriguez-Blanco JD, Regnarsson E, Olsson J, Jespersen HT, Schaumburg K, Stipp SLS (2013) Carbonation of olivine at CO2 supercritical conditions: Reactivity differences between synthetic and natural olivines. Goldschmidt2013 Conf.AbstractsGoogle Scholar
  2. Abramov O, Mojzsis SJ ((2012) Modeling of impact ejecta temperatures on the Earth and the Moon. 43th Lunar and Planet. Sci. Conf. Abstract 2723Google Scholar
  3. Bassez MP (1998) Le deuxième principe. Chap.10 in. La chimie-physique en ligne. Thermodynamique et cinétique chimiques. Université de Strasbourg
  4. Bassez MP (2003) Is high-pressure water the cradle of life? J Phys Condens Matter 15:L353–L361CrossRefGoogle Scholar
  5. Bassez MP (2008a) Synthèse prébiotique dans les conditions hydrothermales. CNRIUT’08, Accessed 29 mai, periode 1C:1–8.
  6. Bassez MP (2008b) Prebiotic synthesis under hydothermal conditions. C. R. Chimie, Académie des Sciences, Paris-2009, 12 (6–7), 801–807, on-line Dec.5th 2008.Google Scholar
  7. Bassez MP (2009) Prebiotic synthesis under hydrothermal conditions. Orig Life Evol Biosph 39(3–4):223–225, proceedings of the July 2008 ISSOL conf. FirenzeGoogle Scholar
  8. Bassez MP (2013) Geochemical origin of biological molecules. European Geosciences Union, EGU2013, Orals PS8.1, Geophysical Research Abstracts 2013, 15, EGU2013-22
  9. Bassez MP, Takano Y, Kobayashi K (2011) Prebiotic organic microstructures. Avalaible from Nature Precedings <>
  10. Bassez MP, Takano Y, Kobayashi K (2012) Prebiotic organic microstructures. Orig Life Evol Biosph 42(4):307–316PubMedCentralPubMedCrossRefGoogle Scholar
  11. Chen CS, Cheng WH, Lin SS (2000) Mechanism of CO formation in reverse water-gas shift reaction over Cu/Al2O3 catalyst. Catal Lett 68:45–48CrossRefGoogle Scholar
  12. Chivot J (2004) Thermodynamique des produits de corrosion. Fonctions thermodynamiques, diagrammes de solubilité, diagrammes E-pH des systèmes Fe-H2O, Fe-CO2-H2O, Fe-S- H2O, Cr- H2O et Ni- H2O en fonction de la température. ANDRA collection Sci. et Techniques, Février 2004;
  13. Cleaves HJ, Michalkova Scott A, Hill CF, Leszczynski J, Sahai N, Hazen R (2012) Mineral-organic interfacial processes: potential roles in the origins of life. Chem Soc Rev 41:5502–5525PubMedCrossRefGoogle Scholar
  14. Clerbaux C, Coheur PF, Hurtmans D, Barret B, Carleer M, Colin R, Semeniuk K, McConnell JC, Boone C, Bernath P (2005) Carbon monoxide distribution from the ACE-FTS solar occultation measurements. Geophys Res Lett 32(16):L16S01CrossRefGoogle Scholar
  15. Cook GW, Olive PR (2012) Pourbaix diagrams for the iron–water system extended to high and low-supercritical conditions. Corros Sci 55:326–331CrossRefGoogle Scholar
  16. Foustoukos DI, Seyfried WE (2004) Hydrocarbons in hydrothermal vent fluids: the role of chromium-bearing catalysts. Science 304:1002–1005PubMedCrossRefGoogle Scholar
  17. French BM (1998) Traces of Catastrophe: A handbook of shock-metamorphic effects in terrestrial meteorite impact structures. LPI Contribution 954, Lunar and Planet. Inst. Houston, 120 pp, p.79Google Scholar
  18. Gradstein F, Ogg JG, Schmitz MD, Ogg GM (2012) A chronostratigraphic division of the Precambrian, in: The Geological Time Scale, chap16:vol.2, Elsevier BVGoogle Scholar
  19. Hale CJ (1987) The intensity of the geomagnetic field at 3.5 Ga: paleointensity results from the Komati formation, Barberton mountain land, South Africa. Earth and Planet. Sci Lett 86:354–364Google Scholar
  20. Kobayashi K, Ogawa T, Tonishi H, Kaneko T, Takano Y, Takahashi JI, Saito T, Muramatsu Y, Yoshida S, Utsumi Y (2008) Synthesis of amino acid precursors from simulated interstellar media by high-energy particles or photons. Electron Commun Jpn 91(3):15–21CrossRefGoogle Scholar
  21. Kurihara H, Yabuta H, Kaneko T, Obayashi Y, Takano Y, Kobayashi K (2012) Characterisation of organic aggregates formed by heating products of simulated primitive Earth atmosphere experiments. Chem Lett 41:441–443CrossRefGoogle Scholar
  22. Le Hir G, Teitler Y, Fluteau F, Donnadieu Y, Philippot P (2014) The faint young Sun problem revisited with a 3-D climate–carbon model – Part 1. Clim Past 10:697–713CrossRefGoogle Scholar
  23. Levy D, Giustetto R, Hoser A (2012) Structure of magnetite (Fe3O4) above the Curie temperature: a cation ordering study. Phys Chem Miner 39:169–176CrossRefGoogle Scholar
  24. Lin LH, Hall J, Lippmann-Pipke J, Ward JA, Sherwood Lollar B, DeFlaun M, Rothmel R, Moser D, Gihring TM, Mislowack B, Onstott TC (2005) Radiolytic H2 in continental crust: nuclear power for deep subsurface microbial communities. Geochem Geophys Geosyst 6(7):1–13CrossRefGoogle Scholar
  25. Macdonald D (1981) Thermodynamics of Corrosion for Geothermal Systems Proc. ACS Symp.Corros. Tech. Envir., STP717, ASTM, Philadelphia, PAGoogle Scholar
  26. Macdonald D (1993) Critical issues in the use of metals and alloys in sulphur-containing aqueous systems. Report, US department of energyGoogle Scholar
  27. Marty B, Zimmermann L, Pujol M, Burgess R, Philippot P (2013) Nitrogen isotopic composition and density of the Archean atmosphere. Science 342:101–104PubMedCrossRefGoogle Scholar
  28. Onstott TC, Lin LH, Davidson M, Mislowack B, Borcsik M, Hall J, Slater G, Ward J, Sherwood Lollar B, Lippmann-Pipke J, Boice E, Pratt LM, Pfiffner S, Moser D, Gihring T, Kieft TL, Phelps TJ, Vanheerden E, Litthaur D, Deflaun M, Rothmel R, Wanger G, Southam G (2006) The origin and age of biogeochemical trends in deep fracture water of the Witwatersrand basin, South Africa. Geomicrobiol J 23(6):369–414CrossRefGoogle Scholar
  29. Pandey P, Pant CK, Gururani K, Arora P, Kumar S, Sharma Y, Pathak HD, Mehata MS (2013) Surface interaction of L-alanine on hematite: an astrobiological implication. Orig Life Evol Biosph 43:331–339PubMedCrossRefGoogle Scholar
  30. Paukert NA, Matter JM, Kelemen PB, Shock EL, Havig FR (2012) Reaction path modeling of enhanced in situ CO2 mineralization for carbon sequestration in the peridotite of the Samail Ophiolite, Sultanate of Oman. Chem Geol 330–331:86–100CrossRefGoogle Scholar
  31. Pourbaix M (1963) Atlas d’équilibres électrochimiques. Gauthier-Villars, ParisGoogle Scholar
  32. Robie RA, Hemingway BS (1995) Thermodynamic properties of minerals and related substances at 298,15K and 1 bar (105 Pa) pressure and at higher temperatures. US Geol. Survey Bull. 2131Google Scholar
  33. Tarduno AJ, Cottrell DR, Watkeys KM, Hofmann A, Doubrovine VP, Mamajek EE, Liu D, Sibeck GD, Neukirch PL, Usui Y (2010) Geodynamo, solar wind, and magnetopause 3.4 to 3.45 billion years ago. Science 327:1238–1240PubMedCrossRefGoogle Scholar
  34. Yoshihara A, Hamano Y (2004) Paleomagnetic constraints on the Archean geomagnetic field intensity obtained from komatiites of the Barberton and Belingwe greenstone belts, South Africa and Zimbabwe. Precambrian Res 131:111–142CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Département chimieUniversité de StrasbourgIllkirchFrance

Personalised recommendations