Skip to main content

The Use of Ascorbate as an Oxidation Inhibitor in Prebiotic Amino Acid Synthesis: A Cautionary Note

Abstract

It is generally thought that the terrestrial atmosphere at the time of the origin of life was CO2-rich and that organic compounds such as amino acids would not have been efficiently formed abiotically under such conditions. It has been pointed out, however, that the previously reported low yields of amino acids may have been partially due to oxidation by nitrite/nitrate during acid hydrolysis. Specifically, the yield of amino acids was found to have increased significantly (by a factor of several hundred) after acid hydrolysis with ascorbic acid as an oxidation inhibitor. However, it has not been shown that CO2 was the carbon source for the formation of the amino acids detected after acid hydrolysis with ascorbic acid. We therefore reinvestigated the prebiotic synthesis of amino acids in a CO2-rich atmosphere using an isotope labeling experiment. Herein, we report that ascorbic acid does not behave as an appropriate oxidation inhibitor, because it contributes amino acid contaminants as a consequence of its reactions with the nitrogen containing species and formic acid produced during the spark discharge experiment. Thus, amino acids are not efficiently formed from a CO2-rich atmosphere under the conditions studied.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Chameides WL, Walker JCG (1981) Rates of fixation by lightning of carbon and nitrogen in possible primitive atmospheres. Orig Life Evol Biosph 11:291–302

    Article  CAS  Google Scholar 

  2. Chyba C, Sagan C (1991) Electric energy sources for organic synthesis on the early earth. Orig Life Evol Biosph 21:3–17

    PubMed  Article  CAS  Google Scholar 

  3. Chyba C, Sagan C (1992) Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life. Nature 355:125–132

    PubMed  Article  CAS  Google Scholar 

  4. Cleaves HJ, Chalmers JH, Lazcano A, Miller SL, Bada JL (2008) A reassessment of prebiotic organic synthesis in neutral planetary atmospheres. Orig Life Evol Biosph 38:105–115

    PubMed  Article  CAS  Google Scholar 

  5. Delano JW (2001) Redox history of the early earth’s interior since 3900 Ma: Implications for prebiotic molecules. Orig Life Evol Biosph 31:311–341

    PubMed  Article  CAS  Google Scholar 

  6. Ferris JF, Joshi PC, Edelson EH, Lawless JG (1978) HCN: a plausible source of purines, pyrimidines and amino acids on the primitive Earth. J Mol Evol 11:293–311

    PubMed  Article  CAS  Google Scholar 

  7. Greenberg JM, Kouchi A, Niessen W, Irth H, van Paradijs J, de Groot M, Hermsen W (1994) Interstellar dust, chirality, comets and the origins of life: life from dead stars? J Biol Phys 20:61–70

    Article  Google Scholar 

  8. Hashimoto GL, Abe Y, Sugita S (2007) The chemical composition of the early terrestrial atmosphere: formation of a reducing atmosphere from CI-like material. J Geophys Res 112:E05010

    Article  Google Scholar 

  9. Kasting JF (1990) Bolide impacts and the oxidation state of carbon in the earth’s early atmosphere. Orig Life Evol Biosph 20:199–231

    Article  CAS  Google Scholar 

  10. Kobayashi K, Tsuchiya M, Oshima T, Yanagawa H (1990) Abiotic formation of amino acids and imidazole by proton irradiation of simulated primitive earth atmospheres. Orig Life Evol Biosph 20:99–109

    Article  CAS  Google Scholar 

  11. Kurihara H, Takano Y, Kaneko T, Obayashi Y, Kobayashi K (2012) Stability of amino acids and related compounds in simulated submarine hydrothermal systems. Bull Chem Soc Jpn 5:624–630

    Article  Google Scholar 

  12. Mancinelli RL, McKay CP (1988) The evolution of nitrogen cycling. Orig Life Evol Biosph 18:311–325

    PubMed  Article  CAS  Google Scholar 

  13. McKay CP, Borucki WJ (1997) Organic synthesis in experimental impact shocks. Science 276:390–392

    PubMed  Article  CAS  Google Scholar 

  14. Miller SL (1953) A production of amino acids under possible primitive earth conditions. Science 117:528–529

    PubMed  Article  CAS  Google Scholar 

  15. Miller SL (1955) Production of some organic compounds under possible primitive earth conditions. J Amer Chem Soc 77:2351–2361

    Article  CAS  Google Scholar 

  16. Miyakawa S, Cleaves HJ, Miller SL (2002a) The cold origin of life: A. implications based on the hydrolytics stabilities of hydrogen cyanide and formamide. Orig Life Evol Biosph 32:195–208

    PubMed  Article  CAS  Google Scholar 

  17. Miyakawa S, Cleaves HJ, Miller SL (2002b) The cold origin of life: B. implications based on pyrimidines and purines produced from frozen ammonium cyanide solutions. Orig Life Evol Biosph 32:209–218

    PubMed  Article  CAS  Google Scholar 

  18. Mojzsis SJ, Arrhenius G, Mckeegan KD, Harrison TM, Nutman AP, Friend CRL (1996) Evidence for life on earth before 3,800 million years ago. Nature 384:55–59

    PubMed  Article  CAS  Google Scholar 

  19. Neish CD, Somogyi A, Smith MA (2010) Titan’s primordial soup: formation of amino acids via low-temperature hydrolysis of tholins. Astrobiology 10:337–347

    PubMed  Article  CAS  Google Scholar 

  20. Oparin AI (1952) The origin of life. New York

  21. Robertson K, Williams P, Bada JL (1987) Acid hydrolysis of dissolved combined amino acids in seawater: a precautionary note. Limnol Oceanogr 32:996–997

    Article  CAS  Google Scholar 

  22. Rosing M (1999) 13C-Depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from West Greenland. Science 283:674–676

    PubMed  Article  CAS  Google Scholar 

  23. Sanchez RA, Ferris JP, Orgel LE (1967) Studies in prebiotic synthesis II. Synthesis of purine precursors and amino acids from aqueous hydrogen cyanide. J Mol Evol 30:223–253

    CAS  Google Scholar 

  24. Schaefer L, Fegley B (2010) Chemistry of atmospheres formed during accretion of the Earth and other terrestrial planets. Icarus 208:438–448

    Article  CAS  Google Scholar 

  25. Schlesinger G, Miller SL (1983a) Prebiotic synthesis in atmospheres containing CH4, CO and CO2.I. Amino acids. J Mol Evol 19:376–382

    PubMed  Article  CAS  Google Scholar 

  26. Schlesinger G, Miller SL (1983b) Prebiotic synthesis in atmospheres containing CH4, CO and CO2.II. Hydrogen cyanide, Formaldehyde and Ammonia. J Mol Evol 19:376–382

    PubMed  Article  CAS  Google Scholar 

  27. Soga T, Tajima I, Heiger DN (2000) Capillary electrophoresis for the determination of forensic anions in adulterated foods and beverages. Am Lab 32:124

    CAS  Google Scholar 

  28. Stribling R, Miller SL (1987) Energy yields for hydrogen cyanide and formaldehyde syntheses: the HCN and amino acid concentrations in the primitive ocean. Orig Life Evol Biosph 17:261–273

    PubMed  Article  CAS  Google Scholar 

  29. Summers DP, Khare B (2007) Nitrogen fixation on early Mars and other terrestrial planets: experimental demonstration of abiotic fixation reactions to nitrite and nitrate. Astrobiology 7:333–341

    PubMed  Article  CAS  Google Scholar 

  30. Tian F, Toon OB, Pavlov AA, Sterck HD (2005) A hydrogen-rich early earth atmosphere. Science 308:1014–1017

    PubMed  Article  CAS  Google Scholar 

  31. Trail D, Watson EB, Tailby ND (2011) The oxidation state of hadean magmas and implications for early Earth’s atmosphere. Nature 480:79–82

    PubMed  Article  CAS  Google Scholar 

  32. Uman MA (1964) The peak temperature of lightning. J Geophys Res 26:123–128

    Google Scholar 

  33. Vantrump JE, Miller SL (1973) Carbon monoxide on the primitive earth. Earth Planet Sci Lett 20:145–150

    Article  CAS  Google Scholar 

  34. Waldhier MC, Dettmer K, Gruber MA, Oefner PJ (2010) Comparison of derivatization and chromatographic methods for GC-MS analysis of amino acid enantiomers in physiological samples. J Chromatogr B 878:1103–1112

    Article  CAS  Google Scholar 

  35. Zolotov MY, Shock EL (2000) A thermodynamic assessment of the potential synthesis of condensed hydrocarbons during cooling and dilution of volcanic gases. J Geophys Res 105:539–559

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to H. J. Cleaves and anonymous referees for their helpful comments which helped us to greatly improve the quality of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hideharu Kuwahara.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kuwahara, H., Eto, M., Kawamoto, Y. et al. The Use of Ascorbate as an Oxidation Inhibitor in Prebiotic Amino Acid Synthesis: A Cautionary Note. Orig Life Evol Biosph 42, 533–541 (2012). https://doi.org/10.1007/s11084-012-9296-z

Download citation

Keywords

  • Amino acid
  • Prebiotic synthesis
  • CO2-rich atmosphere
  • Spark discharge