Origins of Life and Evolution of Biospheres

, Volume 41, Issue 6, pp 545–552 | Cite as

Development of a Model to Compute the Extension of Life Supporting Zones for Earth-Like Exoplanets

  • David Neubauer
  • Aron Vrtala
  • Johannes J. Leitner
  • Maria G. Firneis
  • Regina Hitzenberger
Article

Abstract

A radiative convective model to calculate the width and the location of the life supporting zone (LSZ) for different, alternative solvents (i.e. other than water) is presented. This model can be applied to the atmospheres of the terrestrial planets in the solar system as well as (hypothetical, Earth-like) terrestrial exoplanets. Cloud droplet formation and growth are investigated using a cloud parcel model. Clouds can be incorporated into the radiative transfer calculations. Test runs for Earth, Mars and Titan show a good agreement of model results with observations.

Keywords

Life supporting zone Habitable zone Radiative convective model Cloud parcel model 

References

  1. Baranov YI, Lafferty WJ, Fraser GT (2004) Infrared spectrum of the continuum and dimmer absorption in the vicinity of the O2 vibrational fundamental in O2/CO2 mixtures. J Mol Spectrosc 228:432–440. doi:10.1016/j.jms.2004.04.010 CrossRefGoogle Scholar
  2. Baross JA et al (2007) The limits of organic life in planetary systems. National research council. National Academies Press, WashingtonGoogle Scholar
  3. Bauer et al (1997) Erde und Planeten. In: Bergmann L, Schaefer C (eds) Lehrbuch der Experimentalphysik 7. Walter de Gruyter, BerlinGoogle Scholar
  4. Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New YorkGoogle Scholar
  5. Borysow A, Frommhold L (1986a) Theoretical collision induced rototranslational absorption spectra for modeling Titan’s atmosphere: H2-N2 pairs. Astrophys J 303:495–510. doi:10.1086/164096 CrossRefGoogle Scholar
  6. Borysow A, Frommhold L (1986b) Collision induced rototranslational absorption spectra of N2-N2 pairs for temperatures from 50 to 300 K. Astrophys J 311:1043–1057. doi:10.1086/164841 CrossRefGoogle Scholar
  7. Borysow A, Frommhold L (1987a) Collision induced rototranslational absorption spectra of CH4-CH4 pairs at temperatures from 50 to 300K. Astrophys J 318-940-943. doi:10.1086/165426
  8. Borysow A, Frommhold L (1987b) Collision induced rototranslational absorption spectra of N2-N2 pairs for temperatures from 50 to 300K: Erratum. Astrophys J 320:437. doi:10.1086/165558 CrossRefGoogle Scholar
  9. Borysow A, Tang C (1993) Far infrared CIA spectra of N2-CH4 pairs for modeling of Titan’s atmosphere. Icarus 105:175–183. doi:10.1006/icar.1993.1117 CrossRefGoogle Scholar
  10. Bott A, Sievers U, Zdunkowski W (1990) A radiation fog model with a detailed treatment of the interaction between radiative transfer and fog microphysics. J Atmos Sci 47:2153–2166. doi:10.1175/1520-0469(1990)047<2153:ARFMWA>2.0.CO;2 CrossRefGoogle Scholar
  11. Brown R (1980) A numerical study of radiation fog with an explicit formulation of the microphysics. Q J R Meteorol Soc 106:781–802. doi:10.1002/qj.49710645010 CrossRefGoogle Scholar
  12. Chen JP, Lamb D (1994) Simulation of cloud microphysical and chemical processes using a multicomponent framework. Part I: Description of the microphysical model. J Atmos Sci 51:2613–2630. doi:10.1175/1520-0469(1994)051<2613:SOCMAC>2.0.CO;2 CrossRefGoogle Scholar
  13. Clough SA, Shephard MW, Mlawer EJ, Delamere JS, Iacono MJ, Cady-Pereira K, Boukabara S, Brown PD (2005) Atmospheric radiative transfer modeling: A summary of the AER codes. J Quant Spectrosc Radiat Transf 91:233–244. doi:10.1016/j.jqsrt.2004.05.058 CrossRefGoogle Scholar
  14. Conant WC, Nenes A, Seinfeld JH (2002) Black carbon radiative heating effects on cloud microphysics and implications for the aerosol indirect effect 1. Extended Köhler theory. J Geophys Res 107(D21):4604–4612. doi:10.1029/2002JD002094 CrossRefGoogle Scholar
  15. Fulchignoni M et al (2005) In situ measurements of the physical characteristics of Titan’s environment. Nature 438:785–791. doi:10.1038/nature04314 PubMedCrossRefGoogle Scholar
  16. Gruszka M, Borysow A (1997) Roto-translational collision-induced absorption of CO2 for the atmosphere of Venus at frequencies from 0 to 250 cm^-1 and at temperature from 200K to 800K. Icarus 129:172–177. doi:10.1006/icar.1997.5773 CrossRefGoogle Scholar
  17. Harrington JY, Feingold G, Cotton WR (2000) Radiative impacts on the growth of a population of drops within simulated summertime Arctic stratus. J Atmos Sci 57:766–785. doi:10.1175/1520-0469(2000)057<0766:RIOTGO>2.0.CO;2 CrossRefGoogle Scholar
  18. Hart MH (1978) The evolution of the atmosphere of the Earth. Icarus 33:23–39. doi:10.1016/0019-1035(78)90021-0 CrossRefGoogle Scholar
  19. Houze RA (1993) Cloud dynamics. Academic Press, San DiegoGoogle Scholar
  20. Huang SS (1959) Occurrence of life in the universe. Am Sci 47:397–402. http://www.jstor.org/stable/27827376 Google Scholar
  21. Huang SS (1960) Life outside the solar system. Sci Am 202:55–63. doi:10.1038/scientificamerican0460-55 CrossRefGoogle Scholar
  22. IPCC (2007) Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  23. Irwin P (2010) http://www.atm.ox.ac.uk/user/irwin/. Accessed December 2010
  24. Karkoschka E, Tomasko MG (2010) Methane absorption coefficients for the jovian planets from laboratory, Huygens, and HST data. Icarus 205:674–694. doi:10.1016/j.icarus.2009.07.044 CrossRefGoogle Scholar
  25. Kasting JF (1988) Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. Icarus 74:472–494. doi:10.1016/0019-1035(88)90116-9 PubMedCrossRefGoogle Scholar
  26. Kasting JF, Whitmore DP, Reynolds RT (1993) Habitable Zones around main sequence stars. Icarus 101:108–128. doi:10.1006/icar.1993.1010 PubMedCrossRefGoogle Scholar
  27. Key JR, Schweiger AJ (1998) Tools for atmospheric radiative transfer: Streamer and FluxNet. Comput Geosci 24:443–451. doi:10.1016/S0098-3004(97)00130-1 CrossRefGoogle Scholar
  28. Kneizys FX, Shettle EP, Abreu LW, Chetwynd JH, Anderson GP, Gallery WO, Selby JEA, and Clough SA (1988) Report AFGL-TR-88-0177, Air Force Geophysics Laboratory, Hanscom AFB, MassachusettsGoogle Scholar
  29. Kitzmann D, Patzer ABC, von Paris P, Godolt M, Stracke B, Gebauer S, Grenfell JL, Rauer H (2010) Clouds in the atmospheres of extrasolar planets I. Climatic effects of multi-layered clouds for Earth-like planets and implications for habitable zones. Astron Astrophys 511:A66. doi:10.1051/0004-6361/200913491 CrossRefGoogle Scholar
  30. Kogan YL (1991) The simulation of a convective cloud in a 3-D model with explicit microphysics. Part I: Model description and sensitivity experiments. J Atmos Sci 48:1160–1189. doi:10.1175/1520-0469(1991)048<1160:TSOACC>2.0.CO;2 CrossRefGoogle Scholar
  31. Kornfeld P (1970) Numerical solution for condensation of atmospheric vapor on soluble and insoluble nuclei. J Atmos Sci 27:256–264. doi:10.1175/1520-0469(1970)027<0256:NSFCOA>2.0.CO;2 CrossRefGoogle Scholar
  32. Lavvas PP, Coustenis A, Vardavas IM (2008) Coupling photochemistry with haze formation in Titan’s atmosphere, Part II: Results and validation with Cassini/Huygens data. Planet Space Sci 56:67–99. doi:10.1016/j.pss.2007.05.027 CrossRefGoogle Scholar
  33. Leitner JJ, Neubauer D, Schwarz R, Eggl S, Firneis MG, Hitzenberger R (2010a) The life supporting zone I - From classic to exotic life. In: European Planetary Science Congress Abstracts 5:EPSC2010-677Google Scholar
  34. Leitner JJ, Schwarz R, Firneis MG, Hitzenberger R, Neubauer D (2010b) Generalizing habitable zones in exoplanetary systems - The concept of the life supporting zone. Astrobiology Science Conference 2010 Abstract #5255Google Scholar
  35. Manabe S, Strickler RF (1964) Thermal equilibrium of the atmosphere with a convective adjustment. J Atmos Sci 21:361–385. doi:10.1175/1520-0469(1964)021<0361:TEOTAW>2.0.CO;2 CrossRefGoogle Scholar
  36. Manabe S, Wetherald RT (1967) Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J Atmos Sci 24:241–259. doi:10.1175/1520-0469(1967)024<0241:TEOTAW>2.0.CO;2 CrossRefGoogle Scholar
  37. Mason BJ (1952) Production of rain and drizzle by coalescence in stratiform clouds. Q J R Meteorol Soc 78:377–386. doi:10.1002/qj.49707833708 CrossRefGoogle Scholar
  38. Mason BJ (1960) The evolution of droplet spectra in stratus cloud. J Atmos Sci 17:459–462. doi:10.1175/1520-0469(1960)017<0459:TEODSI>2.0.CO;2 Google Scholar
  39. McKay CP, Pollack JB, Courtin R (1989) The thermal structure of Titan’s atmosphere. Icarus 80:23–53. doi:10.1016/0019-1035(89)90160-7 PubMedCrossRefGoogle Scholar
  40. Neubauer D (2009) Modellierung des indirekten Strahlungseffekts des Hintergrundaerosols in Österreich. Dissertation, University of ViennaGoogle Scholar
  41. Niemann HB et al (2005) Titan’s atmosphere from the GCMS instrument on the Huygens probe. Nature 438:779–784. doi:10.1038/nature04122 PubMedCrossRefGoogle Scholar
  42. Ochs HT, Yao CS (1978) Moment-conserving techniques for warm cloud microphysical computations. Part I: Numerical techniques. J Atmos Sci 35:1947–1958. doi:10.1175/1520-0469(1978)035<1947:MCTFWC>2.0.CO;2 CrossRefGoogle Scholar
  43. Pruppacher HR, Klett JD (1997) Microphysics of clouds and precipitation. Kluwer Academic Publishers, DordrechtGoogle Scholar
  44. Rennó NO, Emanuel KA, Stone PH (1994) Radiative-convective model with an explicit hydrological cycle 1. Formulation and sensivity to model parameters. J Geophys Res 99(D7):14429–14441. doi:10.1029/94JD00020 CrossRefGoogle Scholar
  45. Roach WT (1975) On the effect of radiative exchange on the growth by condensation of a cloud or fog droplet. Q J R Meteorol Soc 102:361–372. doi:10.1002/qj.49710243207 CrossRefGoogle Scholar
  46. Schulze-Makuch D, Irwin LN (2004) Life in the universe. Springer, New YorkGoogle Scholar
  47. Stamnes K, Tsay SC, Wiscombe W, Jayaweera K (1988) Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl Opt 27:2502–2509. doi:10.1364/AO.27.002502 PubMedCrossRefGoogle Scholar
  48. Taylor FW (2010) Planetary atmospheres. Oxford University Press, OxfordGoogle Scholar
  49. Toon OB, McKay CP, Ackerman TP, Santhanam K (1989) Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres. J Geophys Res 94(D13):16,287–16,301. doi:10.1029/JD094iD13p16287 CrossRefGoogle Scholar
  50. Welch RM, Ravichandran MG, Cox SK (1986) Prediction of quasi-periodic oscillations in radiation fogs. Part I: Comparison of simple similarity approaches. J Atmos Sci 43:633–651. doi:10.1175/1520-0469(1986)043<0633:POQPOI>2.0.CO;2 CrossRefGoogle Scholar
  51. Wiscombe WJ, Evans JW (1977) Exponential-sum fitting of radiative transmission functions. J Comput Phys 24:416–444. doi:10.1016/0021-9991(77)90031-6 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • David Neubauer
    • 1
  • Aron Vrtala
    • 2
  • Johannes J. Leitner
    • 1
  • Maria G. Firneis
    • 3
  • Regina Hitzenberger
    • 2
  1. 1.Research Platform: ExoLifeUniversity of ViennaViennaAustria
  2. 2.Aerosol Physics and Environmental Physics Group, Faculty of PhysicsUniversity of ViennaViennaAustria
  3. 3.Institute of AstronomyUniversity of ViennaViennaAustria

Personalised recommendations