Abstract
Polymerization experiments were performed using dry glycine under various pressures of 5–100 MPa at 150°C for 1–32 days. The series of experiments was carried out under the assumption that the pore space of deep sediments was adequate for dehydration polymerization of pre-biotic molecules. The products show various colors ranging from dark brown to light yellow, depending on the pressure. Visible and infrared spectroscopy reveal that the coloring is the result of formation of melanoidins at lower pressures. High-performance liquid chromatography and mass spectrometry analyses of the products show that: (1) glycine in all the experimental runs oligomerizes from 2-mer to 10-mer; (2) the yields are dependent on pressure up to 25 MPa and decrease slightly thereafter; and (3) polymerization progressed for the first 8 days, while the amounts of oligomers remained constant for longer-duration runs of up to 32 days. These results suggest that pressure inhibits the decomposition of amino acids and encourages polymerization in the absence of a catalyst. Our results further imply that abiotic polymerization could have occurred during diagenesis in deep sediments rather than in oceans.
This is a preview of subscription content, access via your institution.







References
Allen EE, Bartlett DH (2000) FabF is required for piezoregulation of cis-vaccenic acid levels and piezophilic growth of the deep-sea bacterium Photobacterium profundum strain SS9. J Bacteriol 182:1264–1271
Benito A, Ventoura G, Casadei M, Robinson T, Mackey B (1999) Variation in resistance of natural isolates of Escherichia coli O157 to high hydrostatic pressure, mild heat, and other stresses. Appl Environ Microbiol 65:1564–1569
Bernal JD (1951) The physical basis of life. Routledge and Kegan Paul, London
Bujdák J, Rode BM (1999) Silica, alumina and clay catalyzed peptide bond formation: enhanced efficiency of alumina catalyst. Orig Life Evol Biosph 29:451–461
Chapelle FH (1987) Bacteria in deep coastal plain sediments of Maryland: a possible source of CO2 to ground water. Water Resour Res 23:1625–1632
Corliss JB, Dymond J, Gordon LI, Edomond JM, von Herzen RP, Ballard RD, Green KK, Williams D, Bainbridge A, Crane K, van Andel TH (1979) Submarine thermal springs on the Galápagos rift. Science 203:1073–1083
Edomond JM, Von Damm KL, McDuff RE, Measures CI (1982) Chemistry of hot springs on the East Pacific Rise and their effluent dispersal. Nature 297:187–191
Ferris JP (1992) Chemical makers of prebiotic chemistry in hydrothermal systems. Orig Life Evol Biosph 22:109–134
Honda S, Yamasaki K, Sawada Y, Morii H (2004) 10-residue folded peptide designed by segment statistics. Structure 12:1507–1518
Imai E, Honda H, Hatori K, Matsuno K (1999) Autocatalytic synthesis of oligoglycine in a simulated submarine hydrothermal system. Orig Life Evol Biosph 29:249–259
Ito M, Handa N, Yanagawa H (1990) Synthesis of polypeptides by microwave heating II. Function of polypeptides synthesized during repeated hydration–dehydration cycles. J Mol Evol 31:187–194
Krumholtz LR (1997) Confined subsurface microbial communities in Cretaceous rock. Nature 386:64–66
Lovely DR (1990) Fe(III)-reducing bacteria in deeply buried sediments of the Atlantic coastal plain. Geology 18:954–957
Matsuno K (1997) A design principle of a flow reactors simulating prebiotic evolution. Viva Origino 25:191–204
Maurel M, Orgel L (2000) Oligomerization of α-thioglutamic acid. Orig Life Evol Biosph 30:423–430
Miller SL, Bada JJ (1988) Submarine hot springs and the origin of life. Nature 334:609–610
Nakazawa H (2006) The origin of life scenario written by the Earth. Shin-nihon, Tokyo (in Japanese)
Nakazawa H, Yamada H, Hashizume H (1993) Origin of life in the Earth’s crust, a hypothesis: probable chemical evolution synchronized with the plate tectonics of the early Earth. Viva Origino 21:213–222 (in Japanese)
Nisbet E (2000) The realms of Archaean life. Nature 405:625–626
Ogata Y, Imai E, Honda H, Hatori K, Matsumoto K (2000) Hydrothermal circulation of seawater through hot vents and contribution of interface chemistry to prebiotic synthesis. Orig Life Evol Biosph 30:527–537
Parkes J, Maxwell J (1993) Some like it hot (and oily). Nature 365:694–695
Pearson JD, McCroskey MC (1996) Perfluorinated acid alternatives to trifluoroacetic acid for reversed-phase high performance liquid chromatography. J Chromatogr A 746:277–281
Pederson K (1997) Evidence of ancient life at 207 m depth in a granitic aquife. Geology 25:827–830
Qian Y, Engel MH, Macko SA, Carpenter S, Deming JW (1993) Kinetics of peptide hydrolysis and amino acid decomposition at high temperature. Geochim Cosmochim Acta 57:3281–3293
Rode BM (1999) Peptides and the origin of life. Peptides 20:773–786
Rubinsztain Y, Yariv S, Ioselis P, Aizenshtat Z, Ikan R (1986) Characterization of melanoidins by IR spectroscopy-I. Galactose-glycine melanoidins. Org Geochem 9:117–125
Russell MJ, Hall AJ (1997) The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J Geol Soc London 154:377–402
Shock EL (1992) Stability of peptides in high-temperature aqueous solutions. Geochem Cosmochim Acta 56:3481–3491
Shock EL (1996) Hydrothermal systems as environments for the emergence of life. Ciba Foundation Symposium 202:40–60
Stevens TO, McKinley JP (1995) Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270:450–455
Ulmer HM (2000) Effects of high pressure on survival and metabolic activity of Lactobacillus plantarum TMW1.460. Appl Environ Microbiol 66:3966–3973
Wellsbury P, Goodman K, Barth T, Cragg BA, Barnes SP, Parkes RJ (1997) Deep marine biosphere fueled by increasing organic matter availability during burial and heating. Nature 388:573–576
Yanagawa H, Kojima K, Ito M, Handa N (1990) Synthesis of polypeptides by microwave heating I. Formation of polypeptides during repeated hydration–dehydration cycles and their characterization. J Mol Evol 31:180–186
Acknowledgments
We thank Profs N. Mano and T. Goto, Graduate School of Pharmacy, Tohoku University, for their help with the HPLC and LC/MS analyses. This work was supported by JSPS grant number 04812 and the MEXT grant number 15204047.
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ohara, S., Kakegawa, T. & Nakazawa, H. Pressure Effects on the Abiotic Polymerization of Glycine. Orig Life Evol Biosph 37, 215–223 (2007). https://doi.org/10.1007/s11084-007-9067-4
Received:
Accepted:
Published:
Issue Date:
Keywords
- Deep sediment
- Diagenesis
- Glycine
- High pressure
- LC/MS
- Peptide
- Polymerization
- Pre-biotic molecular evolution