Skip to main content

The Sugar Model: Autocatalytic Activity of the Triose–Ammonia Reaction

Abstract

Reaction of triose sugars with ammonia under anaerobic conditions yielded autocatalytic products. The autocatalytic behavior of the products was examined by measuring the effect of the crude triose–ammonia reaction product on the kinetics of a second identical triose–ammonia reaction. The reaction product showed autocatalytic activity by increasing both the rate of disappearance of triose and the rate of formation of pyruvaldehyde, the product of triose dehydration. This synthetic process is considered a reasonable model of origin-of-life chemistry because it uses plausible prebiotic substrates, and resembles modern biosynthesis by employing the energized carbon groups of sugars to drive the synthesis of autocatalytic molecules.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Aurian-Blajeni B, Halmann M, Manassen J (1980) Photoreduction of carbon dioxide and water into formaldehyde and methanol on semiconductor materials. Sol Energy 25:165–175

    Article  CAS  Google Scholar 

  2. Bacher C, Tyndall GS, Orlando JJ (2001) The atmospheric chemistry of glycolaldehyde. J Atmos Chem 39:171–189

    Article  CAS  Google Scholar 

  3. Bar-Nun A, Hartman H (1978) Synthesis of organic compounds from carbon monoxide by UV photolysis. Orig Life 9:93–101

    PubMed  Article  CAS  Google Scholar 

  4. Cammerer B, Jalyschko W, Kroh LW (2002) Intact carbohydrate structures as part of the melanoidin skeleton. J Agric Food Chem 50:2083–2087

    PubMed  Article  Google Scholar 

  5. Canuto VM, Levine TR, Augustsson CL, Imhoff CL, Giampapa MS (1983) The young sun and the atmosphere and photochemistry of the early earth. Nature 305:281–286

    Article  CAS  Google Scholar 

  6. Chang S (1993) Prebiotic synthesis in planetary environments. In: Greenberg JM, Mendoza-Gomez CX, Pirronello V (eds) The chemistry of life’s origins (NATO ASI Series C). Kluwer, Dordrecht The Netherlands, pp 259–299

    Google Scholar 

  7. Chittenden GJF, Schwartz AW (1981) Prebiotic photocatalytic reactions. BioSystems 14:15–32

    PubMed  Article  CAS  Google Scholar 

  8. Ellis GP (1959) The Maillard reaction. In: Wolfrom ML, Tipson RS (eds) Advances in carbohydrate chemistry. Academic, New York, pp 63–134

    Google Scholar 

  9. Ferris JP, Chen CT (1975) Chemical evolution. XXVI. Photochemistry of methane, nitrogen, and water mixtures as a model for the atmosphere of the primitive earth. J Am Chem Soc 97:2962–2967

    PubMed  Article  CAS  Google Scholar 

  10. Gardner WS, St. John PA (1991) High-Performance liquid chromatographic method to determine ammonium ion and primary amines in sea water. Anal Chem 63:537–540

    Article  CAS  Google Scholar 

  11. Gerrard JA (2002) New aspects of an AGEing chemistry. Aust J Chem 55:299–310

    Article  CAS  Google Scholar 

  12. Gottschalk G (1986). Bacterial metabolism. Springer, Berlin Heidelberg New York, pp 162–169

    Google Scholar 

  13. Grimmett MR (1965) Formation of heterocyclic compounds from carbohydrates and ammonia. Rev Pure Appl Chem 15:101–108

    CAS  Google Scholar 

  14. Gutsche CD, Redmore D, Buriks RS, Nowotny K, Grassner H, Armbruster CW (1967) Base-catalyzed triose condensations. J Am Chem Soc 89:1235–1245

    PubMed  Article  CAS  Google Scholar 

  15. Halmann M, Aurian-Blajeni B, Bloch S (1981) Photoassisted carbon dioxide reduction and formation of two- and three-carbon compounds. In: Wolman Y (ed) Origin of life. Reidel, New York, pp 143–150

    Google Scholar 

  16. Hubbard JS, Hardy JP, Horowitz NH (1971) Photocatalytic production of organic compounds from CO and H2O in a simulated martian atmosphere. Proc Natl Acad Sci USA 68:574–578

    PubMed  Article  CAS  Google Scholar 

  17. Kasting JF, Pollack JB (1984) Effects of high CO2 levels on surface temperature and atmospheric oxidation state of the early earth. J Atmos Chem 1:403–428

    PubMed  Article  CAS  Google Scholar 

  18. Konigstein J, Fedoronko M (1973) Study of reaction kinetics of methylglyoxal in alkaline medium. Collection Czechoslov. Chem Commun 38:3801–3810

    Google Scholar 

  19. Kort MJ (1970) Reactions of free sugars with aqueous ammonia. In: Tipson RS, Horton D (eds) Advances in carbohydrate chemistry and biochemistry. Academic, New York, pp 311–349

    Google Scholar 

  20. Ledl F, Schleicher E (1990) New aspects of the Maillard reaction in foods and in the human body. Angew Chem Int Ed Engl 29:565–706

    Article  Google Scholar 

  21. Martins SIFS, Van Boekel MAJS (2005) A kinetic model for the glucose/glycine Maillard reaction pathways. Food Chem 90:257–269

    Article  CAS  Google Scholar 

  22. Miller SL (1957) The formation of organic compounds on the primitive earth. Ann NY Acad Sci 69:260–275

    PubMed  Article  CAS  Google Scholar 

  23. Miller SL, Schlesinger G (1984) Carbon and energy yields in prebiotic syntheses using atmospheres containing CH4, CO and CO2. Orig Life 14:83–90

    PubMed  Article  CAS  Google Scholar 

  24. Mizuno T, Weiss AH (1974) Synthesis and utilization of formose sugars. In: Tipson RS, Horton D (eds) Advances in carbohydrate chemistry and biochemistry. Academic, New York, pp 173–215

    Google Scholar 

  25. Pinto JP, Gladstone GR, Yung YL (1980) Photochemical production of formaldehyde in earth’s primitive atmosphere. Science 210:183–185

    Article  CAS  Google Scholar 

  26. Rizzi GP (2004) Role of phosphate and carboxylate in Maillard browning. J Agric Food Chem 52:953–957

    PubMed  Article  CAS  Google Scholar 

  27. Schwartz AW, de Graaf RM (1993) The prebiotic synthesis of carbohydrates: a reassessment. J Mol Evol 35:101–106

    Article  Google Scholar 

  28. Steinberg S, Kaplan IR (1984) The determination of low molecular weight aldehydes in rain, fog and mist by reversed phase liquid chromatography of the 2, 4-dinitrophenylhydrazone derivatives. Int J Environ Anal Chem 18:253–266

    CAS  Google Scholar 

  29. Summers DP (2005) Ammonia formation by the reduction of nitrate/nitrite by FeS: ammonia formation under acidic conditions. Orig Life Evol Biosph 35:299–312

    PubMed  Article  CAS  Google Scholar 

  30. Summers D, Chang S (1993) Prebiotic ammonia from reduction of nitrite by iron (II) on the early earth. Nature 365:630–633

    PubMed  Article  CAS  Google Scholar 

  31. Weber AL (1984) Prebiotic formation of ‘energy-rich’ thioesters from glyceraldehyde and N-acetylcysteine. Orig Life 15:17–27

    Article  CAS  Google Scholar 

  32. Weber AL (1985) Alanine synthesis from glyceraldehyde and ammonium ion in aqueous solution. J Mol Evol 21:351–355

    PubMed  Article  CAS  Google Scholar 

  33. Weber AL (1997) Energy from redox disproportionation of sugar carbon drives biotic and abiotic synthesis. J Mol Evol 44:354–360

    PubMed  Article  CAS  Google Scholar 

  34. Weber AL (1998) Prebiotic amino acid thioester synthesis: thiol-dependent amino acid synthesis from formose substrates (formaldehyde and glycolaldehyde) and ammonia. Orig Life Evol Biosph 28:259–270

    PubMed  Article  CAS  Google Scholar 

  35. Weber AL (2000) Sugars as the optimal biosynthetic carbon substrate of aqueous life throughout the universe. Orig Life Evol Biosph 30:33–43

    PubMed  Article  CAS  Google Scholar 

  36. Weber AL (2001) The sugar model: catalysis by amines and amino acid products. Orig Life Evol Biosph 31:71–86

    PubMed  Article  CAS  Google Scholar 

  37. Weber AL (2002) Chemical constraints governing the origin of metabolism: the thermodynamic landscape of carbon group transformations under mild aqueous conditions. Orig Life Evol Biosph 32:333–357

    PubMed  Article  CAS  Google Scholar 

  38. Weber AL (2004) Kinetics of organic transformations under mild aqueous conditions: implications for the origin of life and its metabolism. Orig Life Evol Biosph 34:473–495

    PubMed  Article  CAS  Google Scholar 

  39. Weber AL (2005) Growth of organic microspherules in sugar-ammonia reactions. Orig Life Evol Biosph 35:523–536

    PubMed  Article  Google Scholar 

  40. Zubay G (1983) Biochemistry. Addison-Wesley, London, pp 487–498, 698–713, 825–872

Download references

Acknowledgments

I thank Esther Varon for technical assistance in these studies. This investigation was supported by a grant (NNA05CP68A) from the Exobiology Program of the National Aeronautics and Space Administration.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Arthur L. Weber.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Weber, A.L. The Sugar Model: Autocatalytic Activity of the Triose–Ammonia Reaction. Orig Life Evol Biosph 37, 105–111 (2007). https://doi.org/10.1007/s11084-006-9059-9

Download citation

Keywords

  • sugar chemistry
  • triose
  • sugar–ammonia reaction
  • catalysis
  • autocatalysis
  • Maillard reaction
  • prebiotic chemistry
  • origin of life