Skip to main content

A Possible Path to the RNA World: Enantioselective and Diastereoselective Purification of Ribose

Abstract

A theoretical mechanism resulting in the prebiotic appearance of enantiopure ribose, which would be needed for the origin of RNA and the “RNA world” is proposed. The mechanism simultaneously explains the emergence of biological homochirality and could answer the question of why nucleic acids are based on ribose rather than another sugar. Cleavage of certain non-chiral mineral crystals is known to lead to formation of chiral surfaces. In a chromatography-like process a mixture of racemic carbohydrates originating from the formose reaction is proposed to have been separated on such a chiral surface. Monosaccharides interact with surfaces through their hydroxyl groups, either by hydrogen bond formation or complex formation with metal ions. α-Ribopyranose, which has all hydroxyl groups on one side of the ring, is known to interact more strongly than other sugars with surfaces, as corroborated by certain chromatographic and electrophoresis data. A similar scenario leading to enantiopure ribose is separation on a flat, but not necessarily chiral surface in the presence of a strong electric field capable of orienting highly polar derivatives of sugars.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  • Angyal SJ (1989) Complexes of metal cations with carbohydrates in solution. Adv Carbohydr Chem Biochem 47:1–43

    CAS  Google Scholar 

  • Angyal SJ, Mills JA (1985) Complexes of carbohydrates with metal cations. XIV. Separation of sugars and alditols by means of their lanthanium complexes. Aust J Chem 38:1279–1285

    CAS  Article  Google Scholar 

  • Arrhenius GO (2003) Crystals and life. Helv Chim Acta 86:1569–1586

    Article  CAS  Google Scholar 

  • Bailey JM (1998) RNA-directed amino acid homochirality. FASEB J 12:503–507

    CAS  Google Scholar 

  • Banfalvi G (2006) Why ribose was selected as the sugar component of nucleic acids. DNA Cell Biol 25:189–196

    PubMed  Article  CAS  Google Scholar 

  • Bielski R, Tencer M (2003) Macroscopically chiral system of three independent orientational effects as a condition for absolute asymmetric synthesis. Can J Chem 81:1029–1038

    Article  CAS  Google Scholar 

  • Bielski R, Tencer M (2005). Optical activity ex machina: absolute enantioselective separation. J Sep Sci 28:2325–2332

    PubMed  Article  CAS  Google Scholar 

  • Bolli M, Micura R, Eschenmoser A (1997) Pyranosyl-RNA: chiroselective self-assembly of base sequences by ligative oligomerization of tetranucleotide-2′,3′-cyclophosphates (with a commentary concerning the origin of biomolecular homochirality). Chem Biol 4:309–320

    PubMed  Article  CAS  Google Scholar 

  • Cheng X, Kaplan LA (2003) Simultaneous analyses of neutral carbohydrates and amino sugars in freshwaters with HPLC-PAD. J Chromatogr Sci 41:1–5

    Article  CAS  Google Scholar 

  • Chrenchaiah PC, Holland HL, Richardson MF (1982) A new approach to the synthesis of chiral molecules from nonchiral reactants. Asymmetric induction by reaction at one surface of a single (Nonchiral) crystal. J Chem Soc Chem Commun, pp 436–437

  • Chrenchaiah PC, Holland HL, Munoz B, Richardson MF (1986) Synthesis of chiral molecules from non-chiral crystals by controlled reaction at a single surface. J Chem Soc, Perkin Trans II 1986:1775–1778

    Article  Google Scholar 

  • Cintas P (2002) Chirality of living systems: a helping hand from crystals and oligopeptides. Angew Chem Int Ed 41:1139–1145

    Article  CAS  Google Scholar 

  • Deem R (2004) Is the chemical origin of life (Abiogenesis) a realistic scenario? http://www.godandscience.org/evolution/chemlife.html

  • Eschenmoser A (1999) Chemical etiology of nucleic acid structure. Science 284:2118–2124

    PubMed  Article  CAS  Google Scholar 

  • Ferris JP, Hill AR, Liu R, Orgel LE (1996) Synthesis of long prebiotic oligomers on mineral surfaces. Nature 381:59–61

    PubMed  Article  CAS  Google Scholar 

  • Flack HD (2003) Chiral and achiral crystal structures. Helv Chim Acta 86:905–921

    Article  CAS  Google Scholar 

  • Frank FC (1953) On spontaneous asymmetric synthesis. Biochim Biophys Acta 11:459–463

    PubMed  Article  CAS  Google Scholar 

  • Hazen RM, Filley TR, Goodfriend GA (2001) Selective adsorption of L- and D-amino acids on calcite: implications for biochemical homochirality. Proc Natl Acad Sci U S A 98:5487–5490

    PubMed  Article  CAS  Google Scholar 

  • Hu Q, Zhou T, Zhang L, Fang Y (2001) Study of the separation and determination of monosaccharides in soluble coffee by capillary zone electrophoresis with electrochemical detection. Analyst 126:298–301

    PubMed  Article  CAS  Google Scholar 

  • Huber C, Wächtershäuser G (1998) Peptides by activation of amino acids with CO on (Ni, Fe)S surfaces: implications for the origin of life. Science 281:670–672

    PubMed  Article  CAS  Google Scholar 

  • Julg A, Ozias Y (1988) Asymmetric adsorption of ethyliminium cation on kaolinite and L-homochirality of amino acids in proteins. J Mol Struct (Theochem) 179:17–25

    Article  Google Scholar 

  • Kawamura K, Ferris JP (1994) Kinetic and mechanistic analysis of dinucleotide and oligonucleotide formation from the 5′-phodphorimidazolide of adenosine on Na+-montmorillonite. J Am Chem Soc 116:7564–7572

    PubMed  Article  CAS  Google Scholar 

  • Klussman M, Iwamura H, Mathew SP, Wells DH Jr, Pandya U, Armstrong A, Blackmond DG (2006) Thermodynamic control of asymmetric amplification in amino acid catalysis. Nature 441:621–623

    Article  CAS  Google Scholar 

  • Lampinen MJ, Noponen T (2005) Electric dipole theory and thermodynamics of actomyosin molecular motor in muscle contraction. J Theor Biol 236:397–421

    PubMed  Article  CAS  Google Scholar 

  • Luty B, Wade RC, Madura JD, Davis ME, Briggs JM, McCammon JA (1993) Brownian dynamics simulation of diffusional encounters between triose phosphate isomerase and glyceraldehyde phosphate: electrostatic steering of glyceraldehyde phosphate. J Phys Chem 97:233–237

    Article  CAS  Google Scholar 

  • MacDermott AJ (2002) The origin of biomolecular chirality. In: Lough WJ, Wainer IW (eds) Chirality in natural and applied science. Blackwell, Oxford, pp 23–52

  • Maurel M-C, Décout J-L (1999) Origins of life: molecular foundations and new approaches. Tetrahedron 55:3141–3182

    Article  CAS  Google Scholar 

  • Miller SL (1953) A production of amino acids under possible primitive earth conditions. Science 117:528–529

    PubMed  Article  CAS  Google Scholar 

  • Miller SL (1955) Production of some organic compounds under possible primitive earth conditions. J Am Chem Soc 77:2351–2361

    Article  CAS  Google Scholar 

  • Mizuno M, Weiss AH (1974) Synthesis and utilization of formose sugars. Adv Carbohydr Chem Biochem 29:173–227

    CAS  Article  Google Scholar 

  • Müller D, Pitsch S, Kittaka A, Wagner E, Vintner C, Eschenmoser A, Ohlofjgewidmet G (1990) Chemie von a-Aminonitrilen. Aldomerisierung von Glycolaldehyd-phosphat zu racemischen Hexose-2,4,6-triphosphaten und (in Gegenwart von Formaldehyd) racemischen Pentose-2,4-diphosphaten: rac -Allose-2,4,6-triphosphat und rac-Ribose-2,4-diphosphat sind die Reaktions-hauptprodukte. Helv Chim Acta 73:1410–1468

    Article  Google Scholar 

  • Plankensteiner K, Reiner H, Schranz B, Rode BM (2004) Prebiotic formation of amino acids in neutral atmosphere by electric discharge. Angew Chem Int Ed 43:1886–1888

    Article  CAS  Google Scholar 

  • Plasson R, Bersini H, Commeyras A (2004) Recycling Frank: spontaneous emergence of homochirality in noncatalytic systems. Proc Natl Acad Sci USA 101:16733–16738

    PubMed  Article  CAS  Google Scholar 

  • Podlech J (2001) Origin of organic molecules and biomolecular homochirality. Cell Mol Life Sci 58:44–60

    PubMed  Article  CAS  Google Scholar 

  • Ray S, Malheiro M, Lemos JPS, Zanchin VT (2004) Charged polytropic compact stars. Braz J Phys 34:310–314

    Article  Google Scholar 

  • Ricardo A, Carrigan MA, Olcott AN, Benner SA (2004) Borate minerals stabilize ribose. Science 303:196

    PubMed  Article  CAS  Google Scholar 

  • Sacerdote MG, Szostak JW (2005) Semipermeable lipid bilayers exhibit diastereoselectivity favoring ribose. Proc Natl Acad Sci U S A 102:6004–6008

    PubMed  Article  CAS  Google Scholar 

  • Schwartz AW (1997) Prebiotic evolution: selecting for homochirality before RNA. Curr Biol 7:R477–R479

    PubMed  Article  CAS  Google Scholar 

  • Scorei R, Cimpoiaşu VM (2006) Boron enhances the thermostability of carbohydrates. Orig Life Evol Biosph 36:1–11

    PubMed  Article  CAS  Google Scholar 

  • Senanayake SD, Idriss H (2006) Photocatalysis and the origin of life: synthesis of nucleoside bases from formamide on TiO2(001) single surfaces. Proc Natl Acad Sci U S A 103:1194–1198

    PubMed  Article  CAS  Google Scholar 

  • Soai K, Sato I, Shibata T (2001) Asymmetric autocatalysis and the origin of chiral homogeneity in organic compounds. Chem Rec 1:321–332

    PubMed  Article  CAS  Google Scholar 

  • Springsteen G, Joyce GF (2004) Selective derivatization and sequestration of ribose from prebiotic mix. J Am Chem Soc 126:9578–9583

    PubMed  Article  CAS  Google Scholar 

  • Urey HC (1952) On the chemical history of the earth and the origin of life. Proc Natl Acad Sci U S A 38:351–363

    PubMed  Article  CAS  Google Scholar 

  • Weissbuch I, Leiserowitz L, Lahav M (2005) Stochastic ≪Mirror Symmetry Breaking≫ via self-assembly, reactivity and amplification of chirality: relevance to abiotic conditions. Top Curr Chem 259:123–165

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Bielski.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bielski, R., Tencer, M. A Possible Path to the RNA World: Enantioselective and Diastereoselective Purification of Ribose. Orig Life Evol Biosph 37, 167–175 (2007). https://doi.org/10.1007/s11084-006-9022-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11084-006-9022-9

Keywords

  • absolute enantioselective separation
  • origin of homochirality
  • why ribose