Origins of Life and Evolution of Biospheres

, Volume 36, Issue 2, pp 109–150 | Cite as

Surfactant Assemblies and their Various Possible Roles for the Origin(S) of Life

  • Peter Walde


A large number of surfactants (surface active molecules) are chemically simple compounds that can be obtained by simple chemical reactions, in some cases even under presumably prebiotic conditions. Surfactant assemblies are self-organized polymolecular aggregates of surfactants, in the simplest case micelles, vesicles, hexagonal and cubic phases. It may be that these different types of surfactant assemblies have played various, so-far underestimated important roles in the processes that led to the formation of the first living systems.

Although nucleic acids are key players in the formation of cells as we know them today (RNA world hypothesis), it is still unclear how RNA could have been formed under prebiotic conditions. Surfactants with their self-organizing properties may have assisted, controlled and compartimentalized some of the chemical reactions that eventually led to the formation of molecules like RNA. Therefore, surfactants were possibly very important in prebiotic times in the sense that they may have been involved in different physical and chemical processes that finally led to a transformation of non-living matter to the first cellular form(s) of life. This hypothesis is based on four main experimental observations: (i) Surfactant aggregation can lead to cell-like compartimentation (vesicles). (ii) Surfactant assemblies can provide local reaction conditions that are very different from the bulk medium, which may lead to a dramatic change in the rate of chemical reactions and to a change in reaction product distributions. (iii) The surface properties of surfactant assemblies that may be liquid- or solid-like, charged or neutral, and the elasticity and packing density of surfactant assemblies depend on the chemical structure of the surfactants, on the presence of other molecules, and on the overall environmental conditions (e. g. temperature). This wide range of surface characteristics of surfactant assemblies may allow a control of surface-bound chemical reactions not only by the charge or hydrophobicity of the surface but also by its “softness”. (iv) Chiral polymolecular assemblies (helices) may form from chiral surfactants.

There are many examples that illustrate the different roles and potential roles of surfactant assemblies in different research areas outside of the field of the origin(s) of life, most importantly in investigations of contemporary living systems, in nanotechnology applications, and in the development of drug delivery systems. Concepts and ideas behind many of these applications may have relevance also in connection to the different unsolved problems in understanding the origin(s) of life.


Micelles vesicles bilayers liposomes surfactants protocell micellar catalysis surfaces 


Amino acids

Amino acids without specification of the configuration are L-amino acids




cetyltrimethylammonium bromide (= hexadecyltrimethylammonium bromide)


cetryltrimethylammonium hydroxide (= hexadecyltrimethylammonium hydroxide)


cetyltrimethylammonium tosylate (= hexadecyltrimethylammonium tosylate)


sodium octylsulfate


sodium dodecylsulfate


sodium dodecylbenzenesulfonate


tetraethyleneglycoldecyl ether (= n-C10H21(OCH2CH2)3OCH2CH2OH)


octaethyleneglycoldodecyl ether (= n-C8H17(OCH2CH2)7OCH2CH2OH)












1-palmitoyl-2-oleoyl-sn-glycero-3-phos phocholine
















Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akiyoshi, K., Itaya, A., Nomura, S.-I. M., Ono, N. and Yoshikawa, K.: 2003, Induction of Neuron-like Tubes and Liposome Networks by Cooperative Effect of Gangliosides and Phospholipids, FEBS Lett. 534, 33–38. PubMedGoogle Scholar
  2. Anet, F. A. L.: 2004, The Place of Metabolism in the Origin of Life, Curr. Opin. Chem. Biol. 8, 654–659.PubMedGoogle Scholar
  3. Apel, C. E. and Deamer, D. W.: 2005, The Formation of Glycerol Monodecanoate by a Dehydration/Condensation Reaction: Increasing the Chemical Complexity of Amphiphiles on the Early Earth,Origins Life Evol. Biospheres 35, 323–332.Google Scholar
  4. Ariga, K., Yuki, H., Kikuchi, J., Dannemuller, O., Albrecht-Gary, A.-M., Nakatani, Y. and Ourisson, H.: 2005, Monolayer Studies of Single-Chain Polyprenylphosphates, Langmuir 21, 4578–4583.PubMedGoogle Scholar
  5. Bachmann, P. A., Luisi, P. L. and Lang, J.: 1992, Autocatalytic Self-Replicating Micelles as Models for Prebiotic Structures, Nature 357, 57–59.Google Scholar
  6. Bailey, A. L. and Sullivan, S. M.: 2000, Efficient Encapsulation of DNA Plasmids in Small Neutral Liposomes Induced by Ethanol and Calcium, Biochim. Biophys. Acta 1468, 239–252.PubMedGoogle Scholar
  7. Bamford, D. H.: 2003, Do Viruses form Lineages Across Different Domains of Life?, Res. Microbiol. 154, 231–236.PubMedGoogle Scholar
  8. Barenholz, Y.: 2001, Liposome Application: Problems and Prospects, Curr. Opin. Colloid Interf. Sci. 6, 66–77.Google Scholar
  9. Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., Chu, C. T.-W., Olson, D. H., Sheppard, E. W., McCullen, S. B., Higgins, J. B. and Schlenker, J. L.: 1992, A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates, J. Am. Chem. Soc. 114, 10834–10843.Google Scholar
  10. Berclaz, N., Müller, M., Walde, P. and Luisi, P. L.: 2001, Growth and Transformation of Vesicles Studied by Ferritin Labeling and Cryotransmission Electron Microscopy, Langmuir 105, 1056–1064.Google Scholar
  11. Bertoncin, F., Mancin, F., Scrimin, P., Tecilla, P. and Tonellato, U.: 1998, Kinetic Amplification of the Enantioselective Cleavage of alpha-Amino Acid Esters by Metallomicelles, Langmuir 14, 975–978.Google Scholar
  12. Blocher, M. C.: 2000, Liposome-Assisted Polycondensation of Amino Acids and Peptides, Dissertation ETH-Zürich, No. 13591.Google Scholar
  13. Blocher, M., Liu, D., Walde, P. and Luisi, P. L.: 1999, Liposome-Assisted Selective Polycondensation of Amino Acids and Peptides, Macromolecules 32, 7332–7334.Google Scholar
  14. Blocher, M., Liu, D. and Luisi, P. L.: 2000, Liposome Assisted Selective Polycondensation of α-Amino Acids and Peptides: The Case of Charged Liposomes, Macromolecules 33, 309–320.Google Scholar
  15. Bolinger, P.-Y., Stamou, D. and Vogel, H.: 2004, Integrated Nanoreactor Systems: Triggering the Release and Mixing of Compounds Inside Single Vesicles, J. Am. Chem. Soc. 126, 8594–8595.PubMedGoogle Scholar
  16. Bolli, M., Micura, R. and Eschenmoser, A.: 1997, Pyranosyl-RNA: Chiroselective Self-Assembly of Base Sequences by Ligative Oligomerization of Tetranucleotide-2prime,3prime-Cyclophosphates (with a Commentary Concerning the Origin of Biomolecular Homochirality), Chem. & Biol. 4, 309–320.Google Scholar
  17. Bonaccio, S., Walde, P. and Luisi, P. L.: 1994, Liposomes Containing Purine and Pyrimidine Bases: Stable Unilamellar Liposomes from Phosphatidyl-Nucleosides, J. Phys. Chem. 98, 6661–6663 and 10376.Google Scholar
  18. Bonaccio, S., Wessiken, M., Berti, D., Walde, P. and Luisi, P. L.: 1996, Relation Between the Molecular Structure of Phosphatidyl Nucleosides and the Morphology of their Supramolecular and Mesoscopic Aggregates, Langmuir 12, 4976–4978.Google Scholar
  19. Bonner, W. A.: 1999, Chirality Amplification – the Accumulation Principle Revisited, Origins Life Evol. Biosphere 29, 615–623.Google Scholar
  20. Bovzivc, B. and Svetina, S.: 2004, A Relationship Between Membrane Properties Forms the Basis of a Selectivity Mechansim for Vesicle Self-Reproduction, Eur. Biophys. J. 33, 565–571.Google Scholar
  21. Buijnsters, P. J. J. A., Feiters, M. C., Nolte, R. J. M., Sommerdijk, N. A. J. M. and Zwanenburg, B.: 2001, Autocatalytic Ring Opening of N-Acylaziridines. Complete Control Over Regioselectivity by Orientation at Interfaces, Chem. Commun. 269–270.Google Scholar
  22. Bunton, C. A., Nome, F., Quina, F. H. and Romsted, L. S.: 1991, Ion Binding and Reactivity at Charged Aqueous Interfaces, Acc. Chem. Res. 24, 357–364.Google Scholar
  23. Bunton, C. A., Wright, S., Holland, P. M. and Nome, F.: 1993, S N2 Reactions of a Sulfonate Ester in Mixed Cationic/Nonionic Micelles, Langmuir 9, 117–120.Google Scholar
  24. Cairns-Smith, A. G.:1985, Seven Clues to the Origin of Life, Cambridge University Press, Cambridge, UK.Google Scholar
  25. Carrillo, C., Teruel, J. A., Aranda, F. J. and Ortiz, A.: 2003, Molecular Mechanism of Membrane Permeabilization by the Peptide Antibiotic Surfactin, Biochim. Biophys. Acta 1611, 91–97.PubMedGoogle Scholar
  26. Carroll, S. B.: 2001, Chance and Necessity: The Evolution of Morphological Complexity and Diversity, Nature 409, 1102–1109.PubMedGoogle Scholar
  27. Cescato, C., Walde, P. and Luisi, P. L.: 1997, Supramolecular Transformations of Vesicles from Amino Acid Based Double Chain Amphiphiles, Langmuir 13, 4480–4482.Google Scholar
  28. Chaimovich, H. and Cuccovia, I. M.: 1997, Quantitative Analysis of Reagent Distribution and Reaction Rates in Vesicles, Progr. Colloid Polym. Sci. 103, 67–77.CrossRefGoogle Scholar
  29. Chakrabarti, A. C., Clark-Lewis, I. and Cullis, P. R.: 1994, Influence of Charge, Charge Distribution, and Hydrophobicity on the Transport of Short Model Peptides into Liposomes in Response to Transmembrane pH Gradients, Biochemistry 33, 8479–8485.PubMedGoogle Scholar
  30. Chakrabarti, A. C. and Deamer, D. W.: 1992, Permeability of Lipid Bilayers to Amino Acids and Phosphates, Biochim. Biophys. Acta 1111, 171–177.PubMedGoogle Scholar
  31. Chakrabarti, A. C. and Deamer, D. W.: 1994, Permeation of Membranes by the Neutral form of Amino Acids and Peptides: Relevance to the Origin of Peptide Translocation, J. Mol. Evol. 39, 1–5.PubMedGoogle Scholar
  32. Chen, I. A. and Szostak, J. W.: 2004, A Kinetic Study of the Growth of Fatty Acid Vesicles, Biophys. J. 87, 988–998.PubMedGoogle Scholar
  33. Chen, I. A., Salehi-Ashtiani, K. and Szostak, J. W.: 2005, RNA Catalysis in Model Protocell Vesicles, J. Am. Chem. Soc. 127, 13213–13219.PubMedGoogle Scholar
  34. Cleij, M. C., Drenth, W. and Nolte, R. J. M.: 1991, Mechanism of Enantioselective Ester Cleavage by Histidine-Containing Dipeptides at a Micellar Interface, J. Org. Chem. 56, 3883–3891.Google Scholar
  35. Cleij, M. C., Scrimin, P., Tecilla, P. and Tonellato, U.: 1996, Chiral Lipophilic Ligands. 3. Control of Enantioselectivity in Copper(II)-Catalyzed Cleavage of Amino Acid Esters by Aggregate Morphology, Langmuir 12, 2956–2960.Google Scholar
  36. Cohn, C. A., Borda, M. J. and Schoonen, M. A.: 2004, RNA Decomposition by Pyrite-Induced Radicals and Possible Role of Lipids During the Emergence of Life, Earth Planet. Sci. Lett. 225, 271–278.Google Scholar
  37. Conde-Frieboes, K. and Blöchliger, E.: 2001, Synthesis of Lipids on the Micelle/Water Interface Using Inorganic Phosphate and an Alkene Oxide, BiSystems 61, 109–114.Google Scholar
  38. Corliss, J. B., Baross, J. A. and Hoffman, S. E.: 1981, An Hypothesis Concerning the Relationship Between Submarine Hot Springs and the Origin of Life on Earth, Ocean. Acta 4, Suppl. 59–69.Google Scholar
  39. Cullis, P. R., Hope, M. J., Bally, M. B., Madden, T. D., Mayer, L. D. and Fenske, D. B.: 1997, Influence of pH Gradients on the Transbilayer Transport of Drugs, Lipids, Peptides and Metal Ions Into Large Unilamellar Vesicles, Biochim. Biophys. Acta 1331, 187–211.PubMedGoogle Scholar
  40. Deamer, D. W.: 1985, Boundary Structures are Formed by Organic Components of the Murchison Carbonaceous Chondrite, Nature 317, 792–794.Google Scholar
  41. Deamer, D. W.: 1997, The First Living Systems: A Bioenergetic Perspective, Microbiol. Mol. Biol. Rev. 61, 239–261.PubMedGoogle Scholar
  42. Deamer, D., Dworkin, J. P., Sandford, S. A., Bernstein, M. P. and Allamandola, L. J.: 2002, The First Cell Membranes, Astrobiology 2, 371–381.PubMedGoogle Scholar
  43. de Duve, C.: 1995, Vital Dust: Life as a Cosmic Imperative,Basic Books, New York.Google Scholar
  44. Döbereiner, H.-G., Käs, J., Noppl, D., Sprenger, I. and Sackmann, E.: 1993, Budding and Fission of Vesicles, Biophys. J. 65, 1396–1403.PubMedGoogle Scholar
  45. Doolittle, W. F. and Brown, J. R.: 1994, Tempo, Mode, the Progenote, and the Universal Root, Proc. Natl. Acad. Sci. USA 91, 6721–6728.PubMedGoogle Scholar
  46. Doudna, J. A. and Cech, T. R.: 2002, The Chemical Repertoire of Natural Ribozymes, Nature 418, 222–228.PubMedGoogle Scholar
  47. Dubois, M., Demé, B., Gulik-Krzywicki, T., Dedieu, J.-C., Vautrin, C., Désert, S., Perez, E. and Zemb, T.: 2001, Self-Assembly of Regular Hollow Icosahedra in Salt-Free Catanionic Solutions, Nature 411, 672–675.PubMedGoogle Scholar
  48. Dubois, M., Lizunov, V., Meister, A., Gulik-Krzywicki, T., Verbavatz, J. M., Perez, E., Zimmerberg, J. and Zemb, T.: 2004, Shape Control Through Molecular Segregation in Giant Surfactant Aggregates, Proc. Natl. Acad. Sci. USA 101, 15082–15087.PubMedGoogle Scholar
  49. Dyson, F.: 1999, Origins of Life, 2nd ed., Cambridge University Press, New York.Google Scholar
  50. Edwards, M. R.: 1998, From a Soup or a Seed? Pyritic Metabolic Complexes in the Origin of Life, Trends Ecol. Evol. 13, 178–181.Google Scholar
  51. Epps, D. E., Sherwood, E., Eichberg, J. and Oró, J.: 1978, Cyanamide Mediated Syntheses Under Plausible Primitive Earth Conditions. V. The Synthesis of Phosphatidic Acids, J. Mol. Evol. 11, 279–292.PubMedGoogle Scholar
  52. Fanucci, G. E., Lee, J. Y. and Cafiso, D. S.: 2003, Membrane Mimetic Environments Alter the Conformation of the Outer Membrane Protein BtuB, J. Am. Chem. Soc. 125, 13932–13933.PubMedGoogle Scholar
  53. Fanun, M., Leser, M., Aserin, A. and Garti, N.: 2001, Sucrose Ester Microemulsions as Microreactors for Model Maillard Reaction, Colloids Surf. A 194, 175–187.Google Scholar
  54. Fendler, J. H.: 1982, Membrane Mimetic Chemistry: Characterizations and Applications of Micelles, Microemulsions, Monolayers, Bilayers, Vesicles, Host-Guest Systems, and Polyions, John Wiley & Sons, New York.Google Scholar
  55. Fletcher, P. D. I. and Robinson, B. H.: 1984, Effect of Organised Surfactant Systems on the Kinetics of Metal-Ligand Complex Formation and Dissociation, J. Chem. Soc. Faraday Trans. 1 80, 2417–2437.Google Scholar
  56. Flynn, G. J., Keller, L. P., Jacobsen, C. and Wirick, S.: 2004, An Assessment of the Amount and Types of Organic Matter Contributed to the Earth by Interplanetary Dust, Adv. Space Res. 33, 57–66.Google Scholar
  57. Fry, I.: 2000, The Emergence of Life on Earth: A Historical and Scientific Overview, Rutgers University Press, New Brunswick.Google Scholar
  58. Fuhrhop, J.-H. and Helfrich, W.: 1993, Fluid and Solid Fibers Made of Lipid Molecular Bilayers, Chem. Rev. 93, 1565–1582.Google Scholar
  59. Furnes, H., Banerjee, N. R., Muehlenbachs, K., Staudigel, H. and de Wit, M.: 2004, Early Life Recorded in Archean Pillow Lavas, Science 304, 578–581.PubMedGoogle Scholar
  60. Gánti, T.: 2003, The Principles of Life, with a Commentary by J. Griesemer, and E. Szathmáry, Oxford University Press.Google Scholar
  61. Gilbert, W.: 1986, The RNA World, Nature 319, 618.Google Scholar
  62. Goto, K., Imamura, C., Yamamoto, S., Matsumoto, Y. and Ueoka, R.: 1994, Remarkable Salt Effects in the Highly Enhanced Enantioselective Hydrolysis of Amino Acid Esters with the Active Tripeptide in the Vesicular System, Chem. Lett. 2081–2084Google Scholar
  63. Goto, K., Matsumoto, Y. and Ueoka, R.: 1995, Hybrid Liposomes Coupled to Steric Control with High Enantioselectivity, J. Org. Chem. 60, 3342–3346.Google Scholar
  64. Goulian, M., Mesquita, O. N., Fygenseon, D. K., Nelsen, C., Andersen, O. S. and Libchaber, A.: 1998, Gramicidin Channel Kinetics Under Tension, Biophys. J. 74, 328–337.PubMedGoogle Scholar
  65. Hagen, A. J., Hatton, T. A. and Wang, D. I. C.: 1990, Protein Refolding in Reversed Micelles, Biotechnol. Bioeng. 35, 955–965.PubMedGoogle Scholar
  66. Hallock, K. J., Lee, D.-K., Omnaas, J., Mosberg, H. I. and Ramamoorthy, A.: 2002, Membrane Composition Determines Paradaxin's Mechanism of Lipid Bilayer Disruption, Biophys. J. 83, 1004–1013.PubMedGoogle Scholar
  67. Hanczyc, M. M., Fujikawa, S. M. and Szostak, J. W.: 2003, Experimental Models of Primitive Cellular Compartments: Encapsulation, Growth, and Division, Science 302, 618–622.PubMedGoogle Scholar
  68. Haran, G., Cohen, R., Bar, L. K. and Barenholz, Y.: 1993, Transmembrane Ammonium Sulfate Gradients in Liposomes Produce Efficient and Stable Entrapment of Amphipathic Weak Bases, Biochim. Biophys. Acta 1151, 201–215.PubMedGoogle Scholar
  69. Hargreaves, W. R., Muulvihill, S. J. and Deamer, D. W.: 1977, Synthesis of Phospholipids and Membranes in Prebiotic Conditions, Nature 266, 78–80.PubMedGoogle Scholar
  70. Harrigan, P. R., Wong, K. F., Redelmeier, T. E., Wheeler, J. J. and Cullis, P. R.: 1993, Accumulation of Doxorubicin and Other Lipophilic Amines into Large Unilamellar Vesicles in Response to Transmembrane pH Gradients, Biochim. Biophys. Acta 1149, 329–338.PubMedGoogle Scholar
  71. Hiscox, J. A.: 2001, An Overview on the Origin of Life: The case for Biological Prospecting on Mars, Earth, Moon Planets 87, 191–212.Google Scholar
  72. Hitz, T., Blocher, M., Walde, P. and Luisi, P. L.: 2001, Stereoselectivity Aspects in the Condensation of Racemic NCA-Amino Acids in the Presence and Absence of Liposomes, Macromolecules 34, 2443–2449.Google Scholar
  73. Hud, N. V. and Anet, F. A. L.: 2000, Intercalation-Mediated Synthesis and Replication: A New Approach to the Origin of Life, J. Theor. Biol. 205, 543–562.PubMedGoogle Scholar
  74. Iglesias, E.: 2001, Ethyl Cyclohexanone-2-carboxylate in Aqueous Micellar Solutions. 2. Enol Nitrosation in Anionic and Cationic Micelles, J. Phys. Chem. B 105, 10295–10302.Google Scholar
  75. Imae, T., Hayashi, N., Matsumoto, T., Tada, T. and Furusaka, M.: 2000, Structures of Fibrous Supramolecular Assemblies Constructed by Amino Acid Surfactants: Investigation by AFM, SANS, and SAXS, J. Colloid Interf. Sci. 225, 285–290.Google Scholar
  76. Ishikawa, K., Sato, K., Shima, Y., Urabe, I. and Yomo, T.: 2004, Expression of a Cascading Genetic Network Within Liposomes, FEBS Lett. 576, 387–390.PubMedGoogle Scholar
  77. Itojima, Y., Ogawa, Y., Tsuno, K., Handa, N. and Yanagawa, H.: 1992, Spontaneous Formation of Helical Strands from Phospholipid-Nucleoside Conjugates, Biochemistry, 31, 4757–4765.PubMedGoogle Scholar
  78. Joyce, G. F., Schwartz, A. A., Miller, S. L. and Orgel, L. E.: 1987, The Case of an Ancestral Genetic System Involving Simple Analogues of the Nucleotides, Proc. Natl. Acad. Sci. USA 84, 4398–4402.PubMedGoogle Scholar
  79. Jung, H. T., Coldren, B., Zasadzinski, J. A., Iampietro, D. J. and Kaler, E. W.: 2001, The Origins of Stability of Spontaneous Vesicles, Proc. Natl. Acad. Sci. USA 98, 1353–1357.PubMedGoogle Scholar
  80. Kaler, E. W., Murthy, A. K., Rodriguez, B. E. and Zasadzinski, J. A. N.: 1989, Spontaneous Vesicle Formation in Aqueous Mixtures of Single-Tailed Surfactants, Science 245, 1371–1374.PubMedGoogle Scholar
  81. Kaler, E. W., Herrington, K. L., Murthy, A. K. and Zasadzinski, J. A. N.: 1992, Phase Behavior and Structures of Mixtures of Anionic and Cationic Surfactants, J. Phys. Chem. 96, 6698–6707.Google Scholar
  82. Käs, J. and Sackmann, E.: 1991, Shape Transitions and Shape Stability of Giant Phospholipid Vesicles in Pure Water Induced by Area-to-Volume Changes, Biophys. J. 60, 825–844.PubMedGoogle Scholar
  83. Kennedy, M. T., Korgel, B. A., Monbouquette, H. G. and Zasadzinski, J. A.: 1998, Cryo-Transmission Electron Microscopy Confirms Controlled Synthesis of Cadmium Sulfide Nanocrystals within Lecithin Vesicles, Chem. Mater. 10, 2116–2119.Google Scholar
  84. Klijn, J. E. and Engberts, J. B. F. N.: 2003, Kemp Elimination in Membrane Mimetic Reaction Media: Probing Catalytic Properties of Catanionic Vesicles Formed from Double-Tailed Amphiphiles, J. Am. Chem. Soc. 125, 1825–1833.PubMedGoogle Scholar
  85. Köning, J., Boettcher, C., Winkler, H., Zeitler, E., Talmon, Y. and Fuhrhop, J.-H.: 1993, Magic Angle (54.7) Gradient and Minimal Surfaces in Quadruple Micellar Helices, J. Am. Chem. Soc. 113, 693–700.Google Scholar
  86. Korgel, B. A. and Monbouquette, H. G.: 2000, Controlled Synthesis of Mixed Core and Layered (Zn,Cd)S and (HG,Cd)S Nanocrystals within Phosphatidylcholine Vesicles, Langmuir 16, 3588–3594.Google Scholar
  87. Kuboi, R., Yoshimoto, M., Walde, P. and Luisi, P. L.: 1997, Refolding of Carbonic Anhydrase by 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine Liposomes, Biotechnol. Prog. 13, 828–836.Google Scholar
  88. Kunitake, T.: 1992, Synthetic Bilayer-Membranes: Molecular Design, Self-Organization, and Application, Angew. Chem. Int. Ed. 31, 709–726.Google Scholar
  89. Kuramoto, N. and Genies, E. M.: 1995, Micellar Chemical Polymerization of Aniline, Synth. Met. 68, 191–194.Google Scholar
  90. Lahav, N.: 1999, Biogenesis: Theories of Life's Origins, Oxford University Press, New York.Google Scholar
  91. Larsson, K.: 1989, Cubic Lipid-Water Phases: Structures and Biomembrane Aspects, J. Phys. Chem. 93, 7304–7314.Google Scholar
  92. Lasic, D. D., Joannic, R., Keller, B. C., Frederik, P. M. and Auvray, L.: 2001, Spontaneous Vesiculation, Adv. Colloid Interf. Sci. 89–90, 337–349.Google Scholar
  93. Lequeux, F. and Candau, S. J.: 1994, Dynamical Properties of Wormlike Micelles, in C. A. Herb, R. K. Prud'homme, (eds), Structure and Flow in Surfactant Solutions, ACS Symposium Series 578, American Chemical Society, Washington, DC, pp. 51–62.Google Scholar
  94. Lindblom, G. and Rilfors, L.: 1989, Cubic Phases and Isotropic Structures Formed by Membrane Lipids-Possible Biological Relevance, Biochim. Biophys. Acta 988, 221–256.Google Scholar
  95. Liu, W., Kumar, J., Tripathy, S. and Samuelson, L. A.: 2002, Enzymatic Synthesis of Conducting Polyaniline in Micelle Solutions, Langmuir 18, 9696–9704.Google Scholar
  96. Löwik, D. W. P. M., Garcia-Hartjes, J., Meijer, J. T. and van Hest, J. C. M.: 2005, Tuning Secondary Structure and Self-Assembly of Amphiphilic Peptides, Langmuir 21, 524–526.PubMedGoogle Scholar
  97. Löwik, D. W. P. M., Linhardt, J. G., Adams, P. J. H. M. and van Hest, J. C. M.: 2003, Non-Covalent Stabilization of a Hairpin Peptide into Liposomes, Org. Biomol. Chem. 1, 1827–1829.PubMedGoogle Scholar
  98. Luisi, P. L.: 2000, The Relevance of Supramolecular Chemistry for the Origin of Life, Adv. Supramol. Chem. 6, 287–307.Google Scholar
  99. Luisi, P. L.: 2002a, Toward the Engineering of Minimal Living Cells, Anat. Rec. 268, 208–214.Google Scholar
  100. Luisi, P. L.: 2002b, Emergence in Chemistry: Chemistry as the Embodiment of Emergence, Foundations of Chemistry 4, 183–200.Google Scholar
  101. Luisi, P. L. and Walde, P., (eds): 2000, Giant Vesicles, Perspectives in Supramolecular Chemistry, Vol. 6, Wiley, Chichester.Google Scholar
  102. Luisi, P. L., Oberholzer, T. and Lazcano, A.: 2002, The Notion of a DNA Minimall Cell: A General Discourse and Some Guidelines for an Experimental Approach, Helv. Chim. Acta 85, 1759–1777.Google Scholar
  103. Magzoub, M., Eriksson, L. E. G. and Gräsland, A.: 2002, Conformational States of the Cell-Penetrating Peptide Penetratin When Interacting with Phospholipid Vesicles: Effects of Surface Charge and Peptide Concentration, Biochim. Biophys. Acta 1563, 53–63.PubMedGoogle Scholar
  104. Margulis, L.: 1993, Symbiosis in Cell Evolution: Microbial Communities in the Archean and Proterozoic Eons, 2nd (ed), W. H. Freeman and Company, New York.Google Scholar
  105. Martin, W. and Russell, M. J.: 2002, On the Origins of Cells: A Hypothesis for the Evolutionary Transitions from Abiotic Geochemistry to Chemoautotrophic Prokaryotes, and from Prokaryotes to Nucleated Cells, Phil. Trans. R. Soc. Lond. B 358, 59–85.Google Scholar
  106. Maurer, N., Wong, K. F., Stark, H., Louie, L., McIntosh, D., Wong, T., Scherrer, P., Semple, S. C. and Cullis, P. C.: 2001, Spontaneous Entrapment of Polynucleotides upon Electrostatic Interaction with Ethanol-Destabilized Cationic Liposomes, Biophys. J. 80, 2310–2326.PubMedGoogle Scholar
  107. Maynard Smith, J. and Szathmáry, E.: 1999, The Origins of Life: Life from the Birth of Life to the Origins of Language, Oxford University Press, Oxford.Google Scholar
  108. McCollom, T. M., Ritter, G. and Simoneit, B. R. T.: 1999, Lipid Synthesis Under Hydrothermal Conditions by Fischer-Tropsch-Type Reactions, Origins Life Evol. Biosphere 29, 153–166.Google Scholar
  109. McIntosh, T. J.: 2004, The 2004 Biophysical Society-Avanti Award in Lipids Address: Roles of Bilayer Structure and Elastic Properties in Peptide Localization in Membranes, Chem. Phys. Lipids 130, 83–98.PubMedGoogle Scholar
  110. Mel'nikov, S. M., Sergeyev, V. G., Mel'nikova, Y. S. and Yoshikawa, K.: 1997, Folding of Long DNA Chains in the Presence of Distearyldimethylammonium Bromide and Unfolding Induced by Neutral Liposomes, J. Chem. Soc., Faraday Trans. 93, 283–288.Google Scholar
  111. Menger, F. M: 1991, Groups of Organic Molecules that Operate Collectively, Angew. Chem. Int. Ed. 30, 1086–1099.Google Scholar
  112. Menger, F. M. and Balachander, N.: 1992, Chemically-Induced Aggregation, Budding, and Fusion in Giant Vesicles: Direct Observation by Light Microscopy, J. Am. Chem. Soc. 114, 5862–5863.Google Scholar
  113. Menger, F. M. and Gabrielson, K.: 1994, Chemically-Induced Birthing and Foraging in Vesicle Systems, J. Am. Chem. Soc. 116, 1567–1568.Google Scholar
  114. Menger, F. M. and Portnoy, C. E.: 1967, On the Chemistry of Reactions Proceeding inside Molecular Aggregates, J. Am. Chem. Soc. 89, 4698–4703.Google Scholar
  115. Miller, S. L.: 1998, The endogenous synthesis of organic compounds, in A. Brack, (ed.), The Molecular Origins of Life: Assembling Pieces of the Puzzle, Cambridge University Press, Cambdrige, UK, pp. 59-85.Google Scholar
  116. Monnard, P.-A.: 2003, Liposome-Entrapped Polymerases as Models for Microscale/Nanoscale Bioreactors, J. Membr. Biol. 191, 87–97.PubMedGoogle Scholar
  117. Monnard, P.-A. and Deamer, D. W.: 2001, Nutrient Uptake by Protocells: A Liposome Model System, Origins Life Evol. Biosphere 31, 147–155.Google Scholar
  118. Moore, P. B. and Steitz, T. A.: 2002, The Involvement of RNA in Ribosome Function, Nature 418, 229–235.PubMedGoogle Scholar
  119. Moreau, L., Barthélemy, P., El Maataoui, M. and Grinstaff, M. W.: 2004, Supramolecular Assemblies of Nucleoside Phosphocholine Amphiphiles, J. Am. Chem. Soc. 126, 7533–7539.PubMedGoogle Scholar
  120. Morigaki, K., Dallavalle, S., Walde, P., Colonna, S. and Luisi, P. L.: 1997, Autopoietic Self-Reproduction of Chiral Fatty Acid Vesicles, J. Am. Chem. Soc. 119, 292–301.Google Scholar
  121. Morowitz, H. J.: 1992, Beginnings of Cellular Life: Metabolism Recapitulates Biogenesis, Yale University Press, New Haven.Google Scholar
  122. Morowitz, H. J., Heinz, B. and Deamer, D. W.: 1988, The Chemical Logic of a Minimum Protocell, Origins Life Evol. Biosphere 18$,$ 281–287.Google Scholar
  123. Mushegian, A.: 1999, The Minimal Genome Concept, Curr. Opin. Gen. Develop. 9, 709–714.Google Scholar
  124. Nakashima, N., Ando, R., Muramatsu, T. and Kunitake, T.: 1994, Unusually Large Induced Circular Dichroism of an Aromatic Compound Bound to Helical Superstructures of Chiral Ammonium Bilayers, Langmuir 10, 232–234.Google Scholar
  125. Nakanishi, N., Asakuma, S. and Kunitake, T.: 1985, Optical Microscopy Study of Helical Superstructures of Chiral Bilayer Membranes, J. Am. Chem. Soc. 107, 509–510.Google Scholar
  126. Namani, T. and Walde, P.: 2005, From Decanoate Micelles to Decanoic Acid/Dodecyl-benzenesulfonate Vesicles, Langmuir 21, 6210–6219.PubMedGoogle Scholar
  127. Naraoka, H., Shimoyama, A. and Harada, K.: 1999, Molecular Distribution of Monocarboxylic Acids in Asuka Carbonaceous Chondrites from Antarctica, Origins Life Evol. Biosphere 29, 187–201.Google Scholar
  128. New, R. P. C.: 1990, Liposomes, a Practical Approach, IRL Press, Oxford.Google Scholar
  129. Nielson, P. E.: 1993, Peptide Nucleic Acid (PNA): A Model Structure for the Primordial Genetic Material? Origins Life Evol. Biosphere 23, 323–327.Google Scholar
  130. Nomura, F., Nagata, M., Inaba, T., Hiramatsu, H., Hotani, H. and Takiguchi, K.: 2001, Capabilities of Liposomes for Topological Transformation, Proc. Natl. Acad. Sci. USA 98, 2340–2345.PubMedGoogle Scholar
  131. Nomura, S.-I. M., Tsumoto, K., Hamada, T., Akiyoshi, K., Nakatani, Y. and Yoshikawa, K.: 2003, Gene Expression Within Cell-Sized Lipid Vesicles, ChemBioChem 4, 1172–1175.PubMedGoogle Scholar
  132. Nooner, D. W. and Oró, J.: 1979, Synthesis of Fatty Acids by a Closed System Fischer-Tropsch Process, in E. L. Kugler, F. W. Steffgen, (eds), Hydrocarbon Synthesis From Carbon Monoxide and Hydrogen, Am. Chem. Soc., Washington DC, pp. 159–171.Google Scholar
  133. Nowick, J. S. and Chen, J. S.: 1992, Molecular Recognition in Aqueous Micellar Solution: Adenine-Tymine Base-Pairing in SDS Micelles, J. Am. Chem. Soc. 114, 1107–1108.Google Scholar
  134. Oberholzer, T., Wick, R., Luisi, P. L. and Biebricher, C. K.: 1995, Enzymatic RNA Replication in Self-Reproducing Vesicles: An Approach to a Minimal Cell, Biochem. Biophys. Res. Commun. 207, 250–257.PubMedGoogle Scholar
  135. Oberholzer, T., Nierhaus, K. H. and Luisi, P. L.: 1999, Protein Expression in Liposomes, Biochem. Biophys. Res. Commun. 261, 238–241.PubMedGoogle Scholar
  136. Ohkubo, K., Urabe, K., Yamamoto, J., Sagawa, T. and Usui, S.: 1995, Novel Stereoselective Incorporation and Hydrolysis of Long-Chain Amino-Acid Substrates by Vesicular Membrane Systems which Include tri- or Tetra-Peptide Catalysts, J. Chem. Soc. Perkin Trans. 1, 2957–2959.Google Scholar
  137. Oparin, A. I.: 1938, The Origin of Life, MacMillian, New York.Google Scholar
  138. Oparin, A. I.: 1965, The Origin of Life and the Origin of Enzymes, Adv. Enzymol. 27, 347–380.PubMedGoogle Scholar
  139. Oparin, A. I. and Gladilin, K. L.: 1980, Evolution of Self-Assembly of Probionts, BioSystems 12, 133–145.PubMedGoogle Scholar
  140. Orgel, L.: 1998, The origin of life – a Review of Facts and Speculations, Trends Biochem. Sci. 23, 491–495.PubMedGoogle Scholar
  141. Orgel, L.: 2000, Self-Organizing Biochemical Cycles, Proc. Natl. Acad. Sci. USA 97, 12503–12507.PubMedGoogle Scholar
  142. Orgel, L.: 2003, Some Consequences of the RNA World Hypothesis, Origins Life Evol. Biosphere 33, 211–218.Google Scholar
  143. Oró, J.: 1994, Chemical Synthesis of Lipids and the Origin of Life, J. Biol. Phys. 20, 135–147.Google Scholar
  144. Otto, S. and Engberts, J. B. F. N.: 2000, Diels-Alder Reactions in Water, Pure Appl. Chem. 72, 1365–1372.Google Scholar
  145. Otto, S., Engberts, J. B. F. N. and Kwak, J. C.- T.: 1998, Million-Fold Acceleration of a Diels-Alder Reaction due to Combined Lewis Acid and Micellar Catalysis in Water, J. Am. Chem. Soc. 120, 9517–9525.Google Scholar
  146. Ourisson, G., and Nakatani, Y.: 1994, The Terpenoid Theory of the Origin of Cellular Life: The Evolution of Terpenoids to Cholesterol, Chem. Biol. 1, 11–23.PubMedGoogle Scholar
  147. Paula, S., Volov, A. G., Van Hoek, A. N., Haines, T. H. and Deamer, D. W.: 1996, Permeation of Protons, Potassium Ions, and Small Polar Molecules Through Phospholipid Bilayers as a Function of Membrane Thickness, Biophys. J. 70, 339–348.PubMedGoogle Scholar
  148. Persson, D., Thorén, P. E. G., Esbjörner, E. K., Goksör, M., Lincoln, P. and Nordén, B.: 2004, Vesicle Size-Dependent Translocation of Penetratin Analogs Across Lipid Membranes, Biochim. Biophys. Acta 1665, 142–155.PubMedGoogle Scholar
  149. Podlech, J.: 2001, Origin of Organic Molecules and Biomolecular Homochirality, Cell. Mol. Life Sci. 58, 44–60.PubMedGoogle Scholar
  150. Pohorille, A., Wilson, M. A. and Chipot, C.: 2003, Membrane Peptides and Their Role in Protobiological Evolution, Origins Life Evol. Biosphere 33, 173–197.Google Scholar
  151. Pozzi, G., Biraul, V., Werner, B., Dannenmuller, O., Nakatani, Y., Ourisson, G. and Terakawa, S.: 1996, Single-Chain Polyprenyl Phosphates Form “Primitive'' Membranes, Angew. Chem. Int. Ed. Engl. 35, 177–179.Google Scholar
  152. Rasmussen, S., Chen, L., Nilsson, M. and Abe, S.: 2003, Bridging Nonliving and Living Matter, Artificial Life 9, 269–316.PubMedGoogle Scholar
  153. Rasmussen, S., Chen, L., Stadler, B. M. R. and Stadler, P. F.: 2004, Proto-Organism Kinetics: Evolution Dynamics of Lipid Aggregates with Genes and Metabolism, Origins Life Evol. Biosphere 34, 171–180.Google Scholar
  154. Rao, M., Eichberg, J. and Oró, J.: 1982, Synthesis of Phosphatidylcholine Under Possible Primitive Earth Conditions, J. Mol. Evol. 18, 196–202.PubMedGoogle Scholar
  155. Rao, M., Eichberg, J. and Oró, J.: 1987, Synthesis of Phosphatidylethanolamine Under Possible Primitive Earth Conditions, J. Mol. Evol. 25, 1–6.PubMedGoogle Scholar
  156. Raulin-Cerceau, F., Maurel, M.-C. and Schneider, J.; 1998, From Panspermia to Bioastronomy, the Evolution of the Hypothesis of Universal Life, Origins Life Evol. Biosphere 28, 597–612.Google Scholar
  157. Riepe, A., Beier, H. and Gross, H. J.: 1999, Enhancement of RNA Self-Cleavage by Micellar Catalysis, FEBS Lett. 457, 193–199.PubMedGoogle Scholar
  158. Rispens, T. and Engberts, J. B. F. N.: 2001, Efficient Catalysis of a Diels-Alder Reaction by Metallo-Vesicles in Aqueous Solution, Org. Lett. 3, 941–943.PubMedGoogle Scholar
  159. Rispens, T. and Engberts, J. B. F. N.: 2003, A Kinetic Study of 1,3-Dipolar Cycladditions in Micellar Media, J. Org. Chem. 68, 8520–8528.PubMedGoogle Scholar
  160. Rushdi, A. I. and Simoneit, B. R. T.: 2001, Lipid Formation by Aqueous Fischer-Tropsch-Type Synthesis Over a Temperature Range of 100 to 400circC, Origins Life Evol. Biosphere 31, 103–118.Google Scholar
  161. Russell, M. J. and Hall, A. J.: 1997, The Emergence of Life from Iron Monosulphide Bubbles at a Submarine Hydrothermal Redox and pH Front, J. Geol. Soc., London 154, 377–402.Google Scholar
  162. Sackmann, E.: 1994, Membrane Bending Energy Concept of Vesicle- and Cell-Shapes and Shape-Transitions, FEBS Lett. 346, 3–16.PubMedGoogle Scholar
  163. Sato, Y., Nomura, S.-I. M. and Yoshikawa, K.: 2003, Enhanced Uptake of Giant DNA in Cell-Sized Liposomes, Chem. Phys. Lett. 380, 279–285.Google Scholar
  164. Schlesinger, P. H., Ferdani, R., Pajewski, R., Pajewska, J. and Gokel, G. W.: 2002, A Hydrocarbon Anchored Peptide That Forms a Chloride-Selective Channel in Liposomes, Chem. Commun. 840–841.Google Scholar
  165. Schopf, J. W. (ed.): 2002, Life's Origin: The Beginnings of Biological Evolution, University of California Press, Berkeley.Google Scholar
  166. Scrimin, P.: 1996, Control of Reactivity in Aggregates of Amphiphilic Molecules, in Supramolecular Control of Structure and Reactivity, Perspectives in Supramolecular Chemistry, Vol. 3 (Hamilton A. D., ed.), John Wiley & Sons, Chichester, pp. 101–153.Google Scholar
  167. Scrimin, P., Tecilla, P. and Tonellato, U.: 1994, Chiral Lipophilic Ligands. 1. Enantioselective Cleavage of i-Amino Acid Esters in Metallomicellar Aggregates, J. Org. Chem. 59, 4194–4201.Google Scholar
  168. Segré, D. and Lancet, D.: 2000, Composing Life, EMBO Reports 1, 217–222.PubMedGoogle Scholar
  169. Segré, D., Ben-Eli, D., Deamer, D. W. and Lancet, D.: 2001, The Lipid World, Origins Life Evol. Biosphere 31, 119–145.Google Scholar
  170. Sephton, M. A.: 2002, Organic Compounds in Carbonaceous Meteorites, Nat. Prod. Rep. 19, 292–311.PubMedGoogle Scholar
  171. Shimoyama, A., Naraoka, H., Komiya, M. and Harada, K.: 1989, Analyses of Carboxylic Acids and Hydrocarbons in Antarctic Carbonaceous Chondrites, Yamato-74662 and Yamato-793321, Geochem. J. 23, 181–193.Google Scholar
  172. Simoneit, B. R. T.: 2004, Prebiotic Organic Synthesis under Hydrothermal Conditions: An Overview, Adv. Space Res. 33, 88–94.Google Scholar
  173. Sjöblom, J., Lindberg, R. and Friberg, S. E.: 1996, Microemulsions – Phase Equilibria Characterization, Structures, Applications and Chemical Reactions, Adv. Colloid Interface Sci. 95, 125–287.Google Scholar
  174. Smith, J. Y., Arnold Jr., F. P., Parson, I. and Lee, M. R.: 1999, Biochemical evolution III: Polymerization on Organophilic Silica-Rich Surfaces, Crystal-Chemical Modeling, Formation of First Cells, and Geological Clues, Proc. Natl. Acad. Sci. USA 96, 3479–3485.PubMedGoogle Scholar
  175. Smith, R. and Tanford, C.: 1972, The Critical Micelle Concentration of L-alpha-Dipalmitoylcholine in Water and in Water/Methanol Solutions, J. Mol. Biol. 67, 75–83.PubMedGoogle Scholar
  176. Soai, K., Shibata, T. and Sato, I.: 2004, Discovery and Development of Asymmetric Autocatalysis, Bull. Chem. Soc. Jpn. 77, 1063–1073.Google Scholar
  177. Stanish, I. and Monbouquette, H. G.: 2001, Engineering A23187/EDTA-Containing Metal-Sorbing Vesicles for Selective Extraction of Divalent Heavy Metal Ions, J. Membr. Sci. 192, 99–113.Google Scholar
  178. Stillwell, W.: 1976, Facilitated Diffusion of Amino Acids Across Biomolecular Lipid Membranes as a Model for Selective Accumulation of Amino Acids in a Primordial Protocell, BioSystems 8, 111–117.PubMedGoogle Scholar
  179. Stillwell, W. and Winter, H. C.: 1973, The Diffusion of Glycine and N-Substituted Glycines Across Bimolecular Lipid Membranes, Biochem. Biopohys. Res. Commun. 54, 1437–1443.Google Scholar
  180. Svetina, S. and vZekvs, B.: 2002, Shape Behavior of Lipid Vesicles as the Basis of Some Cellular Processes, Anat. Rec. 268, 215–225.PubMedGoogle Scholar
  181. Szostak, J. W., Bartel, D. P. and Luisi, P. L.: 2001, Synthesizing life, Nature 409, 387–390.PubMedGoogle Scholar
  182. Takakura, K., Toyota, T. and Sugawara, T.: 2003, A Novel System of Self-Reproducing Giant Vesicles, J. Am. Chem. Soc. 125, 8134–8140.PubMedGoogle Scholar
  183. Tanaka, T., Sano, R., Yamashita, Y. and Yamazaki, M.: 2004, Shape Changes and Vesicle Fission of Giant Unilamellar Vesicles of Liquid-Ordered Phase Membrane Induced by Lysophosphatidylcholine, Langmuir 20, 9526–9534.PubMedGoogle Scholar
  184. Tacsciouglu, S.: 1996, Micellar Solutions as Reaction Media, Tetrahedron 52, 11113–11152.Google Scholar
  185. Traïkia, M., Warschawski, D. E., Lambert, O., Rigaud, J.-L. and Devaux, P. F.: 2002, Asymmetrical Membranes and Surface Tension, Biophys. J. 83, 1443–1454.PubMedGoogle Scholar
  186. Trandum, C., Westh, P., Jörgensen, K. and Mouritsen, O. G.: 2000, A Thermodynmaic Study of the Effects of Cholesterol on the Interaction between Liposomes and Ethanol, Biophys. J. 78, 2486–2492.PubMedCrossRefGoogle Scholar
  187. Trevors, J. T.: 2003, Origin of the First Cells on Earth: A Possible Scenario, Geomicrobiol. J. 20, 175–183.Google Scholar
  188. Treyer, M., Walde, P. and Oberholzer, T.: 2002, Permeability Enhancement of Lipid Vesicles to Nucleotides by Use of Sodium Cholate: Basic Studies and Application to an Enzyme-Catalyzed Reaction Occurring inside the Vesicles, Langmuir 18, 1043–1050.Google Scholar
  189. Tributsch, H., Fiechter, S., Jokisch, D., Rojas-Chapana, J. and Ellmer, K.: 2003, Photoelectrochemical Power, Chemical Energy and Catalytic Acticity for Organic Evolution on Natural Pyrite Interfaces, Origins Life Evol. Biosphere 32, 129–162.Google Scholar
  190. Ueoka, R., Matsumoto, Y., Moss, R. A., Swarup, S., Sugii, A., Harada, K., Kikuchi, J. and Murakami, Y.: 1988, Membrane Matrix for the Hydrolysis of Amino Acid Esters with Marked Enantioselectivity, J. Am. Chem. Soc. 110, 1588–1595.Google Scholar
  191. Ueoka, R., Mori, S. and Moss, R. A.: 1994, Remarkably Enhanced Diastereoselective Hydrolysis by Controlling the Reaction Field, Langmuir 10, 2892–2898.Google Scholar
  192. Umakoshi, H., Shimanouchi, T. and Kuboi, R.: 1998, Selective Separation Process of Proteins Based on the Heat Stress-Induced Translocation Across Phospholipid Membranes, J. Chromatogr. B 711, 111–116.Google Scholar
  193. Vauthey, S., Milo, C., Frossard, P., Garti, N., Leser, M. E. and Watzke, H. J.: 2000, Structures Fluids as Microreactors for Flavor Formation by the Maillard Reaction, J. Agric. Food Chem. 48, 4808–4816.PubMedGoogle Scholar
  194. Velimirov, B.: 2001, Nanobacteria, Ultramicrobacteria and Starvation Forms: A Search for the Smallest Metabolizing Bacterium, Microbes Environ. 16, 67–77.Google Scholar
  195. Vlassov, A., Khvorova, A. and Yarus, M.: 2001, Binding and Disruption of Phospholipid Bilayers by Supramolecular RNA Complexes, Proc. Natl. Acad. Sci. USA 98, 7706–7711.PubMedGoogle Scholar
  196. von Kiedrowski, G.: 2005 (organizer), 1st Workshop on “Systems Chemistry'”, Venice, October 3–4, 2005.Google Scholar
  197. Wächtershäuser, G.: 1992, Groundworks for an Evolutionary Biochemistry: The Iron-Sulphur World, Prog. Biophys. Molec. Biol. 58, 85–201.Google Scholar
  198. Walde, P.: 2004, Preparation of Vesicles (Liposomes), in Encyclopedia of Nanoscience and Nanotechnology, Volume 9. (H. S. Nalwa ed.), American Scientific Publishers, Los Angeles, pp. 43–79.Google Scholar
  199. Walde, P. and Ichikawa, S.: 2001, Enzymes Inside Lipid Vesicles: Preparation, Reactivity and Applications,Biomol. Eng. 18, 143–177.PubMedGoogle Scholar
  200. Walde, P., Wessicken, M., Rädler, U., Berclaz, N., Conde-Frieboes, K. and Luisi, P. L.: 1997, Preparation and Characterization of Vesicles from Mono-$n$-alkyl Phosphates and Phosphonates, J. Phys. Chem. B, 101, 7390–7397.Google Scholar
  201. Walde, P., Wick, R., Fresta, M., Mangone, A. and Luisi, P. L.: 1994, Autopoietic Self-Reproduction of Fatty Acid Vesicles, J. Am. Chem. Soc. 16, 11649–11654.Google Scholar
  202. Walsh, D., Hopwood, J. D. and Mann, S.: 1994, Crystal Tectonics: Construction of Reticulated Calcium Phosphate Frameworks in Bicontinuous Reverse Microemulsions, Science 264, 1576–1578.PubMedGoogle Scholar
  203. Wick, R., Walde, P. and Luisi, P. L.: 1995, Light Microscopic Investigations of the Autocatalytic Self-Reproduction of Giant Vesicles, J. Am. Chem. Soc. 117, 1435–1436.Google Scholar
  204. Wills, C. and Bada, J.: 2000, The Spark of Life: Darwin and the Primeval Soup, Oxford University Press, Oxford.Google Scholar
  205. Woese, C.: 1998, The Universal Aancestor, Proc. Natl. Acad. Sci. USA 95, 6854–6859.PubMedGoogle Scholar
  206. Yanagawa, H., Ogawa, Y., Furuta, H. and Tsuno, K., 1989, Spontaneous Formation of Superhelical Strands, J. Am. Chem. Soc. 111, 4567–4570.Google Scholar
  207. Yatcilla, M. T., Herrington, K. L., Brasher, L. L., Kaler, E. W., Chiruvolu, S. and Zasadzinski, J. A.: 1996, Phase Behavior of Aqueous Mixtures of Cetyltrimethylammonium Bromide (CTAB) and Sodium Octyl Sulfate (SOS), J. Phys. Chem. 100, 5874–5879.Google Scholar
  208. Yatsimirsky, A. K.: 2004, Enzyme Mimics, in Encyclopedia of Supramolecular Chemistry, (Atwood J. L., Steed J. W., eds.) Marcel Dekker, Inc., New York, pp. 546–553.Google Scholar
  209. Yoshimoto, M. and Kuboi, R.: 1999, Oxidative Refolding of Denatured/Reduced Lysozyme Utilizing the Chaperone-Like Function of Liposomes and Immobilized Liposome Chromatography, Biotechnol. Prog. 15, 480–487.PubMedGoogle Scholar
  210. Yoshimoto, M., Wang, S., Fukunaga, K., Treyer, M., Walde, P., Kuboi, R. and Nakao, K.: 2004, Enhancement of Apparent Substrate Selectivity of Proteinase K Encapsulated in Liposomes Through a Cholate-Induced Alteration of the Bilayer Permeability, Biotechnol. Bioeng. 85, 222–233.PubMedGoogle Scholar
  211. Zemb, T., Dubois, M., Demé, B. and Gulik-Krzywicki, T.: 1999, Self-Assembly of Flat Nanodiscs in Salt-Free Catanionic Surfactant Solutions, Science 283, 816–819.PubMedGoogle Scholar
  212. Zubay, G.: 1996, Origins of Life on the Earth and in the Cosmos, Wm. C. Brown Publishers, Dubuque, IA, USA.Google Scholar
  213. Zurbriggen, R.: 2003, Immunostimulating Reconstituted Influenza Virosomes, Vaccine 21, 921–924.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.ETH ZürichDepartment of MaterialsZürichSwitzerland

Personalised recommendations