Skip to main content
Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Origins of Life and Evolution of Biospheres
  3. Article

Comparative Evaluation Of Raman Spectroscopy At Different Wavelengths For Extremophile Exemplars

  • Published: October 2005
  • Volume 35, pages 489–506, (2005)
  • Cite this article
Download PDF
Origins of Life and Evolution of Biospheres Aims and scope Submit manuscript
Comparative Evaluation Of Raman Spectroscopy At Different Wavelengths For Extremophile Exemplars
Download PDF
  • S. E. Jorge Villar1,
  • H. G. M. Edwards2 &
  • M. R. Worland3 
  • 389 Accesses

  • 38 Citations

  • Explore all metrics

Abstract

Raman spectra have been obtained for extremophiles from several geological environments; selected examples have been taken from hot and cold deserts comprising psychrophiles, thermophiles and halophiles. The purpose of this study is the assessment of the effect of the wavelength of the laser excitation on the ability to determine unique information from the Raman spectra about the specificity of detection of biomolecules produced as a result of the survival strategies adopted by organisms in extreme terrestrial environments. It was concluded that whereas FT-Raman spectroscopy at 1064 nm gave good quality results the time required to record the data was relatively large compared with other wavelengths of excitation but that better access to the CH stretching region for organic molecules was given. Shorter wavelength excitation of biomolecules in the blue-green regions of the visible spectrum using a conventional dispersive spectrometer was more rapid but very dependent upon the type of chemical compound being studied; most relevant biomolecules fluoresced at these wavelengths but carotenoids exhibited a resonance effect which resulted in an improved detection capability. Minerals and geological materials, in contrast, were best studied at these visible wavelengths. In general, the best compromise system for the excitation of the Raman spectra of both geological and biological materials was provided using a 785 nm laser coupled with a dispersive spectrometer, especially for accessing the 1800–200 cm−1 wavenumber shift region where much of the definitive analytical information resides. This work will have conclusions relevant to the use of miniaturised Raman spectrometers for the detection of biomolecules in extraterrestrial planetary exploration.

Article PDF

Download to read the full article text

Similar content being viewed by others

Detection of Biosignatures Using Raman Spectroscopy

Chapter © 2019

Defining Multiple Characteristic Raman Bands of α-Amino Acids as Biomarkers for Planetary Missions Using a Statistical Method

Article Open access 07 January 2016

Detection of Bioaerosols Using Raman Spectroscopy

Chapter © 2014
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  • Bishop, J. L., Murad, E., Lane, M. D. and Mancinelli, R. L.: 2004, Multiple Techniques for Mineral Identification on Mars: A Study of Hydrothermal Rocks as Potential Analogues for Astrobiology Sites on Mars, Icarus 169, 311–323.

    Article  Google Scholar 

  • Clark, B. C.: 1998, Surviving the Limits to Life at the Surface of Mars, Journal of Geophysical Research-Planets 103, 28545–28555.

    Article  Google Scholar 

  • Cockell, C. A.: 2001, The Martian and Extraterrestrial UV-Radiation Environment Part II: Further Considerations on Materials and Design Criteria for Artificial Ecosystems, Acta Astronautica 49(11), 631–640.

    Article  PubMed  Google Scholar 

  • Cockell, C. S.: 2000, The Ultraviolet History of the Terrestrial Planets – Implications for Biological Evolution, Planetary and Space Science 48, 203–214.

    Article  Google Scholar 

  • de Vera, J.-P., Horneck, G., Rettberg, P. and Ott, S.: 2004, The Potential of the Lichen Symbiosis to Cope with the Extreme Conditions of Outer Space II: Germination Capacity of Lichen Ascospores in Response to Simulated Space Conditions, Adv. Space Res. 33, 1236–1243.

    Article  PubMed  Google Scholar 

  • Dickensheets, D. L., Wynn-Williams, D. D., Edwards, H. G. M., Schoen, C., Crowder, C. and Newton, E. M.: 2000, A Novel Miniature Confocal Microscope/Raman Spectrometer System for Biomolecular Analysis on Future Mars Missions after Antarctic Trials, J. Raman Spectroscopy, 31(7), 633–635.

    Article  Google Scholar 

  • Edwards, H. G. M.: 2004, Raman Spectroscopic Protocol for the Molecular Recognition of Key Biomarkers in Astrobiological Exploration, Orig. Life Evol. Biosphere 34, 3–11.

    Article  Google Scholar 

  • Edwards, H. G. M., Holder, J. M. and Wynn-Williams, D. D.: 1998, Comparative FT-Raman Spectroscopy ofXanthoria Lichen-Substratum Systems from Temperate and Antarctic Habitats, Soil Biol. Biochem. 30, 1947–1953.

    Article  Google Scholar 

  • Edwards, H. G. M., Newton, E. M., Dickensheets, D. L. and Wynn-Williams, D. D.: 2003a, Raman Spectroscopic Detection of Biomolecular Markers from Antarctic Materials: Evaluation for Putative Martian Habitats, Spectrochim. Acta Part A: Mol. Biomol. Spectroscopy 59, 2277–2290.

    Article  Google Scholar 

  • Edwards, H. G. M., Newton, E. M. and Wynn-Williams, D. D.: 2003b, Molecular Structural Studies of Lichen Substances II: Atranorin, Gyrophoric Acid, Fumarprotocetraric Acid, Rhizocarpic Acid, Calycin, Pulvinic Dilactone and Usnic Acid, J. Mol. Struct. 651–653, 27–37.

    Article  Google Scholar 

  • Edwards, H. G. M., Newton, E. M., Wynn-Williams, D. D., Dickensheets, D., Shoen, C. and Crowder, C.: 2003c, Laser Wavelength Selection for Raman Spectroscopy of Microbial Pigmentsin situ in Antarctic Desert Ecosystem Analogues of Former Habitats on Mars.Intern. J. Astrobiol. 1, 333–348.

    Article  Google Scholar 

  • Edwards, H. G. M., Wynn-Williams, D. D. and Jorge Villar, S. E.: 2004a, Biological Modification of Haematite in Antarctic Cryptoendolithic Communities.J. Raman Spectroscopy 35, 470–474.

    Article  Google Scholar 

  • Edwards, H. G. M., Wynn-Williams, D. D., Little, S. J., Oliveira, L. F. C., Cockell, C. S. and Ellis-Evans, J. C.: 2004b, Stratified Response to Environmental Stress in a Polar Lichen Characterized with FT-Raman Microscopic Analysis, Spectrochim. Acta Part A: Mol. Biomol. Spectroscopy 60, 2029–2033.

    Article  Google Scholar 

  • Ellery, A. and Wynn-Williams, D. D.: 2003, Why Raman Spectroscopy on Mars? A Case of the Right Tool for the Right Job, Astrobiology 3(3), 565–579.

    Article  PubMed  Google Scholar 

  • Finegold, L.: 1986, Molecular Aspects of Adaptation to Extreme Cold Environments, Adv. Space Res. 6, 257–264.

    Article  PubMed  Google Scholar 

  • Jorge Villar, S. E., Edwards, H. G. M. and Wynn-Williams, D. D.: 2003, FT-Raman Spectroscopic Analysis of an Antarctic Endolith, Inter. J. Astrobiol. 1(4), 349–355.

    Article  Google Scholar 

  • Long, D. A.: 2002.The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules, John Wiley and Sons Ltd., Chichester, UK.

    Google Scholar 

  • Mancinelli, R. L.: 1998, Biopan-Survival I: Exposure of the OsmophilesSynechococcus SP. (Nageli) andHaloarcula SP. to the Space Environment, Adv. Space Res. 22, 327–334.

    Article  Google Scholar 

  • O'Brien, A., Sharp, R., Russell, N. J. and Roller, S.: 2004, Antarctic Bacteria Inhibit Growth of Food-Borne Microorganisms at Low Temperatures, FEMS Microbiol. Ecol. 48, 157–167.

    Article  Google Scholar 

  • Rivkina, E., Laurinavichius, K., McGrath, J., Tiedje, J., Shcherbakova, V. and Gilichinsky, D.: 2004, Microbial Life in Permafrost, Adv. Space Res. 33, 1215–1221.

    Article  PubMed  Google Scholar 

  • Rothschild, L. J. and Cockell, C. S.: 1999, Radiation: Microbial Evolution, Ecology, and Relevance to Mars Missions, Mutation Res./Fundamental Mol. Mech. Mutagenesis 430, 281–291.

    Article  Google Scholar 

  • Sharma, S. K., Lucey, P. G., Ghosh, M., Hubble, H. W. and Horton: 2003, Stand-off Raman Spectroscopic Detection of Minerals on Planetary Surfaces, Spectrochim. Acta Part A – Mol. Biomol. Spectroscopy 59, 2391–2407.

    Article  Google Scholar 

  • Vincent, W. F., Mueller, D. R. and Bonilla, S.: 2004, Ecosystems on Ice: The Microbial Ecology of Markham Ice Shelf in the High, Arctic Cryobiol. 48, 103–112.

    Article  Google Scholar 

  • Wang, A. and Haskin, L. A.: 2000, Development of a Flight Raman Spectrometer for the “Athena” Rover Scientific Instrument Payload for Mars Surveyor Missions, MicrobeamAnal. 2000, Proc. Inst. Phys. Conf. Ser. 165, 103–104.

    Google Scholar 

  • Wang, A., Haskin, L. A., Lane, A. L., Wdowiak, T. J., Squyres, S. W., Wilson, R. J., Hovland, L. E., Manatt, K. S., Raouf, N. and Smith, C. D.: 2003, Development of the Mars Microbeam Raman Spectrometer (MMRS), J. Geophys. Res.-Planets 108(E1): art. No. 5005.

    Google Scholar 

  • Wynn-Williams, D. D. and Edwards, H. G. M.: 2000, Proximal Analysis of Regolith Habitats and Protective Biomoleculesin situ by Laser Raman Spectroscopy: Overview of Terrestrial Antarctic Habitats and Mars Analogs, Icarus 144, 486–503.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Area de Geodinamica Interna, Facultad de Humanidades y Educacion, Universidad de Burgos, C/Villadiego s/n 09001, Burgos, Spain

    S. E. Jorge Villar

  2. Chemical and Forensic Sciences, University of Bradford, Bradford, BD7 1DP, UK

    H. G. M. Edwards

  3. British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK

    M. R. Worland

Authors
  1. S. E. Jorge Villar
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. H. G. M. Edwards
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. M. R. Worland
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to H. G. M. Edwards.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villar, S.E.J., Edwards, H.G.M. & Worland, M.R. Comparative Evaluation Of Raman Spectroscopy At Different Wavelengths For Extremophile Exemplars. Orig Life Evol Biosph 35, 489–506 (2005). https://doi.org/10.1007/s11084-005-3528-4

Download citation

  • Received: 25 November 2004

  • Accepted: 28 February 2005

  • Issue Date: October 2005

  • DOI: https://doi.org/10.1007/s11084-005-3528-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • biosignatures
  • extremophile
  • planetary exploration
  • Mars
  • Raman spectroscopy
  • wavelength laser excitation
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

152.53.55.43

Not affiliated

Springer Nature

© 2024 Springer Nature