Abstract
The origin of the first RNA polymers is central to most current theories for the origin of life. Difficulties associated with the prebiotic formation of RNA have lead to the general consensus that a simpler polymer preceded RNA. However, polymers proposed as possible ancestors to RNA are not much easier to synthesize than RNA itself. One particular problem with the prebiotic synthesis of RNA is the formation of phosphoester bonds in the absence of chemical activation. Here we demonstrate that glyoxylate (the ionized form of glyoxylic acid), a plausible prebiotic molecule, represents a possible ancestor of the phosphate group in modern RNA. Although in low yields (∼ 1%), acetals are formed from glyoxylate and nucleosides under neutral conditions, provided that metal ions are present (e.g., Mg2+), and provided that water is removed by evaporation at moderate temperatures (e.g., 65 ∘C), i.e. under “drying conditions”. Such acetals are termed ga-dinucleotides and possess a linkage that is analogous to the backbone in RNA in both structure and electrostatic charge. Additionally, an energy-minimized model of a gaRNA duplex predicts a helical structure similar to that of A-form RNA. We propose that glyoxylate-acetal linkages would have had certain advantages over phosphate linkages for early self-replicating polymers, but that the distinct functional properties of phosphoester and phosphodiester bonds would have eventually lead to the replacement of glyoxylate by phosphate.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Avoid common mistakes on your manuscript.
References
Avetisov, V. and Goldanskii, V.: 1996, Mirror Symmetry Breaking at the Molecular Level, Proc. Natl. Acad. Sci. USA 93, 11435–11442.
Bengston, S.: 1994, Early Life on Earth, Columbia University, New York.
Benner, S.A.: 2004, Understanding Nucleic Acids Using Synthetic Chemistry, Acc. Chem. Res. 37, 784–797.
Böhler, C., Nielsen, P. E. and Orgel, L. E.: 1995, Template Switching Between PNA and RNA Oligonucleotides, Nature 376, 578–581.
Case, D. A., Darden, T. A., Cheatham, T. E., III, Simmerling, C. L., Wang, J., Duke, R. E., Luo, R., Merz, K. M., Wang, B., Pearlman, D. A. et al.: 2004, University of California, San Francisco.
Chaput, J. C., Ichida, J. K. and Szostak, J. W.: 2003, DNA Polymerase-Mediated DNA Synthesis on a TNA Template, J. Am. Chem. Soc. 125, 856–857.
Cheatham, T. E., III and Kollman, P. A.: 1997, Molecular Dynamics Simulations Highlight the Structural Differences among DNA:DNA, RNA:RNA, and DNA:RNA Hybrid Duplexes, J. Am. Chem. Soc. 119, 4805–4825.
Cieplak, P., Cheatham, T. E., III and Kollman, P. A.: 1997, Molecular Dynamics Simulations Find That 3′ Phosphoramidate Modified DNA Duplexes Undergo a B to A Transition and Normal DNA Duplexes an A to B Transition, J. Am. Chem. Soc. 119, 6722–6730.
Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz, K. M., Ferguson, D. M., Spellmeyer, D. C., Fox, T., Caldwell, J. W. and Kollman, P. A.: 1995, A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules, J. Am. Chem. Soc. 117, 5179–5197.
De Proft, F., Langenaeker, W. and Geerlings, P.: 1995, Acidity of Alkyl Substituted Alcohols: Are Alkyl-Groups Electron-Donating or Electron-Withdrawing? Tetrahedron 51, 4021–4032.
Eschenmoser, A.: 1999, Chemical Etiology of Nucleic Acid Structure, Science 284, 2118–2124.
Ferris, J. P., Aubrey R. Hill, J., Liu, R. and Orgel, L. E.: 1996, Synthesis of Long Prebiotic Oligomers on Mineral Surfaces, Nature 381, 59–61.
Fuller, W. D., Sanchez, R. A. and Orgel, L. E.: 1972, Studies in Prebiotic Synthesis. VII Solid-State Synthesis of Purine Nucleosides, J. Mol. Evol. 1, 249–257.
Gesteland, R. and Atkins, J. F. (eds.): 1999, The RNA World, Second Edition: The Nature of Modern RNA Suggests a Prebiotic RNA World, Cold Spring Harbor Laboratory Press, Cold Spring Harbor.
Herdewijn, P.: 2001, TNA as a Potential Alternative to Natural Nucleic Acids, Angew. Chem., Int. Ed. Engl. 40, 2249–2251.
Hud, N. V. and Anet, F. A. L.: 2000, Intercalation-Mediated Synthesis and Replication: A New Approach to the Origin of Life, J. theor. Biol. 205, 543–562.
Jain, S. S., Anet, F. A. L., Stahle, C. J. and Hud, N. V.: 2004, Enzymatic Behavior by Intercalating Molecules in a Template-Directed Ligation Reaction, Angew. Chem. Int. Ed. Engl. 43, 2004–2008.
Joyce, G. F.: 2002, The Antiquity of RNA-Based Evolution, Nature 418, 214–221.
Joyce, G. F., Inoue, T. and Orgel, L. E.: 1984, Non-Enzymatic Template-Directed Synthesis on RNA Random Copolymers. Poly(C, U) Templates, J. Mol. Biol. 176, 279–306.
Joyce, G. F. and Orgel, L. E.: 1999, Prospects for Understanding the Origin of the RNA World in The RNA World, Gesteland, R. F., Cech, T. R. and Atkins, J. F. (eds), 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp. 49–77.
Joyce, G. F., Schwartz, A. W., Miller, S. L. and Orgel, L. E.: 1987, The Case for an Ancestral Genetic System Involving Simple Analogues of the Nucleotides, Proc. Natl. Acad. Sci. USA 84, 4398–4402.
Keefe, A. D. and Miller, S. L.: 1995, Are Polyphosphates or Phosphate Esters Prebiotic Reagents? J. Mol. Evol. 41, 693–702.
Kirby, A. J. and Jencks, W. P.: 1965, The Reactivity of Nucleophilic Reagents Toward the p-Nitrophenyl Phosphate Dianion, J. Am. Chem. Soc. 87, 3209–3216.
Lavery, R. and Sklenar, H.: 1989, Defining the Structure of Irregular Nucleic Acids – Conventions and Principles, J. Biomol. Struct. Dyn. 6, 655–667.
Li, X., Zhan, Z.-Y. J., Knipe, R. and Lynn, D. G.: 2002, DNA-Catalyzed Polymerization, J. Am. Chem. Soc. 124, 746–747.
Miller, S. L.: 1997, Peptide Nucleic Acids and Prebiotic Chemistry, Nat. Struct. Biol. 4, 167–169.
O'Brien, P. J. and Herschlag, D.: 2001, Functional Interrelationships in the Alkaline Phosphatase Superfamily: Phosphodiesterase Activity of Escherichia Coli Alkaline Phosphatase, Biochemistry 40, 5691–5699.
Orgel, L. E.: 2004, Prebiotic Chemistry and the Origin of the RNA World, Crit. Rev. Biochem. Mol. Biol. 39, 99–123.
Ould-Moulaye, C. B., Dussap, C. G. and Gros, J. B.: 2002, A Consistent Set of Formation Properties of Nucleic Acid Compounds. Nucleosides, Nucleotides and Nucleotide-Phosphates in Aqueous Solution, Thermochimica Acta 387, 1–15.
Piccirilli, J. A.: 1995, Origin of Life. RNA Seeks Its Maker, Nature 376, 548–549.
Rice, J. F. and Gao, X.: 1997, Conformation of Formacetal and 3′-Thioformacetal Nucleotide Linkers and Stability of Their Antisense RNA⋅ DNA Hybrid Duplexes, Biochemistry 36, 399–411.
Schöning, K. U., Scholz, P., Guntha, S., Wu, X., Krishnamurthy, R. and Eschenmoser, A.: 2000, Chemical Etiology of Nucleic Acid Structure: The Alpha-Threofuranosyl-(3′→2′) Oligonucleotide System, Science 290, 1347–1351.
Schwartz, A. W.: 1997, Speculation on the RNA Precursor Problem, J. theor. Biol. 187, 523–527.
Weber, A. L.: 2001, The Sugar Model: Catalysis by Amines and Amino Acid Products, Origins Life Evol. B. 31, 71–86.
Westheimer, F. H.: 1987, Why Nature Chose Phosphates, Science 235, 1173–1178.
Wiberg, K. B., Bader, R. F. W. and Lau, C. D. H.: 1987, Theoretical Analysis of Hydrocarbon Properties. 2. Additivity of Group Properties and the Origin of Strain-Energy, J. Am. Chem. Soc. 109, 1001–1012.
Wiberg, K. B., Morgan, K. M. and Maltz, H.: 1994, Thermochemistry of Carbonyl Reactions. 6. A Study of Hydration Equilibria, J. Am. Chem. Soc. 116, 11067–11077.
Wood, D. J., Hruska, F. E. and Ogilvie, K. K.: 1974, Proton Magnetic Resonance Studies of 2′-Deoxythmidine, Its 3′- and 5′-Monophosphates and 2′-Deoxythymidylyl-(3′,5′)-2′-Deoxythymidine in Aqueous Solution, Can. J. Chem. 52, 3353–3366.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bean, H.D., Anet, F.A.L., Gould, I.R. et al. Glyoxylate as a Backbone Linkage for a Prebiotic Ancestor of RNA. Orig Life Evol Biosph 36, 39–63 (2006). https://doi.org/10.1007/s11084-005-2082-4
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/s11084-005-2082-4