Skip to main content

Combinatorics Arising from Lax Colimits of Posets

Abstract

In this paper we study maximal chains in certain lattices constructed from powers of chains by iterated lax colimits in the 2-category of posets. Such a study is motivated by the fact that in lower dimensions, we get some familiar combinatorial objects such as Dyck paths and Kreweras walks.

This is a preview of subscription content, access via your institution.

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Bernardi, O.: Bijective counting of Kreweras walks and loopless triangulations. J. Combinatorial Theory, Ser. A 114, 931–956 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Birkhoff, G.: Lattice Theory. American Mathematical Society, New York City (1948)

    MATH  Google Scholar 

  3. Bousquet-Mélou, M.: Walks in the quarter plane: Kreweras’ algebraic model. Ann. Appl. Probab. 15(2), 1451–1491 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fuchs, M., Yu, G.-R., Zhang, L.: On the asymptotic growth of the number of tree-child networks. European Journal of Combinatorics 93, 103278 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  5. Goswami, A., Janelidze, Z.: Duality in non-abelian algebra IV. Duality for groups and a universal isomorphism theorem. Adv. Math. 349, 781–812 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Grandis, M.: Algebra, Homological: The Interplay of Homology with Distributive Lattices and Orthodox Semigroups. World Scientific Publishing Co., Singapore (2012)

    Book  MATH  Google Scholar 

  7. Grothendieck, A.: Catégories fibrées et descente. Seminaire de géometrie algébrique de l’Institut des Hautes Etudes Scientifiques (SGA 1), Paris (1961)

  8. Janelidze, Z.: StackWalk. https://github.com/ZurabJanelidze/stackwalk (2020)

  9. Kelly, G.M.: Basic concepts of enriched category theory. Reprints Theory Appl Categories, vol 10 (2005)

  10. Kreweras, G.: Sur une classe de problèmes liés au treillis des partitions d’entiers. Cahiers du B.U.R.O. 6, 5–105 (1965)

    Google Scholar 

  11. Snover, S.L., Troyer, S.F.: m-Dimensional catalan numbers. https://oeis.org/A005789/a005789_1.pdf (preprint) (1989)

  12. van Niekerk, F.K.: Biproducts and commutators for noetherian forms. Theory Appl Categories 34, 961–992 (2019)

    MathSciNet  MATH  Google Scholar 

  13. Viennot, X.: Une théorie combinatoire des polynômes orthogonaux, ses extensions, interactions et applications (Chapitre 2), http://www.xavierviennot.org/xavier/petite_ecole_files/PO_PEC_ch2b.pdf (2007)

Download references

Acknowledgements

The authors would like to thank Sarah Selkirk for taking an interest in an early version of this paper and insightful discussions that followed, as well as some useful suggestions on the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zurab Janelidze.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janelidze, Z., Prodinger, H. & van Niekerk, F. Combinatorics Arising from Lax Colimits of Posets. Order (2023). https://doi.org/10.1007/s11083-022-09617-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11083-022-09617-3

Keywords

Mathematics Subject Classification (2020)