Skip to main content
Log in

Continuous Order-Preserving Functions for All Kind of Preorders

  • Published:
Order Aims and scope Submit manuscript

Abstract

A topology is said to be strongly useful if every weakly continuous preorder admits a continuous order-preserving function. A strongly useful topology is useful, in the sense that every continuous total preorder admits a continuous utility representation. In this paper, I study the structure of strongly useful topologies. The existence of a natural one-to-one correspondence is proved, between weakly continuous preorders and equivalence classes of families of complete separable systems. In some sense, this result completely clarifies the connections between order theory and topology. Then, I characterize strongly useful topologies and I present a property concerning subspace topologies of strongly useful topological spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis - a Hitchhiker’s Guide. Springer, New York (2006)

    MATH  Google Scholar 

  2. Bosi, G., Herden, G.: On a strong continuous analogue of the Szpilrajn theorem and its strengthening by Dushnik and Miller. Order 22, 329–342 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bosi, G., Herden, G.: On a possible continuous analogue of the Szpilrajn theorem and its strengthening by Dushnik and Miller. Order 23, 271–296 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bosi, G., Herden, G.: Continuous multi-utility representations of preorders. J. Math. Econom. 48, 212–218 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bosi, G., Herden, G.: On continuous multi-utility representations of semi-closed and closed preorders. Math. Social Sci. 79, 20–29 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bosi, G., Herden, G.: The structure of useful topologies. J. Math. Econom. 82, 69–73 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bosi, Zuanon, M.: Continuity and continuous multi-utility representations of nontotal preorders: some considerations concerning restrictiveness. In: Bosi, G., Campión, M.J., Candeal, J.C., Indur1áin, E. (eds.), Mathematical Topics on Representations of Ordered Structures. pp. 213–236, Spinger (2020)

  8. Bosi, G., Zuanon, M.: Topologies for the continuous representability of every nontotal weakly continuous preorder. Econom. Theory Bul. 8, 369–378 (2020)

    Article  MathSciNet  Google Scholar 

  9. Bosi, G., Zuanon, M.: Topologies for the continuous representability of all continuous total preorders. J. Optim. Theory Appl. 188, 420–431 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bosi, G., Estevan, A.: Continuous representations of preferences by means of two continuous functions. J. Optim. Theory Appl. 185, 700–710 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Campión, M.J., Candeal, J.C., Induráin, E.: The existence of utility functions for weakly continuous preferences on a Banach space. Math. Social Sci. 51, 227–237 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Campión, M.J., Candeal, J.C., Induráin, E., Mehta, G.B.: Representable topologies and locally connected spaces. Topology and its Applications 154, 2040–2049 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Campión, M.J., Candeal, J.C., Induráin, E.: Preorderable topologies and order-representability of topological spaces. Topology Appl. 156, 2971–2978 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Campión, M.J., Candeal, J.C., Induráin, E., Mehta, G.B.: Continuous order representability properties of topological spaces and algebraic structures. J. Korean Math. Soc. 49, 449–473 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Candeal, J.C., Hervés, C., Induráin, E.: Some results on representation and extension of preferences. J. Math. Econom. 29, 75–81 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cigler, J., Reichel, H.C.: Topologie. Bibliographisches Institut, Mannheim-Wien-Zürich (1978)

  17. Engelking, R.: General Topology, Berlin: Heldermann (revised and completed ed.) (1989)

  18. Herden, G.: On the existence of utility functions. Math. Social Sci. 17, 297–313 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  19. Herden, G.: Topological spaces for which every continuous total preorder can be represented by a continuous utility function. Math. Social Sci. 22, 123–136 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. Herden, G., Pallack, A.: Useful topologies and separable systems. Appl. Gen. Topol. 1, 61–81 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Herden, G., Pallack, A.: On the continuous analogue of the Szpilrajn theorem I. Math. Social Sci. 43, 115–134 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Peleg, B.: Utility functions for partially ordered topological spaces. Econometrica 38, 93–96 (1970)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianni Bosi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bosi, G. Continuous Order-Preserving Functions for All Kind of Preorders. Order 40, 87–97 (2023). https://doi.org/10.1007/s11083-022-09598-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-022-09598-3

Keywords

Mathematics subject classification (2010)

Navigation